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Abstract-In a previous paper. we established the general fonn of the expansion of the stress intensity
factors in powers of the crack extension length. for a crack propagating in a two·dimensional body
along an arbitrary kinked and curved path. The aim of the present paper is to calculate precisely
the various functions of the geometric and mechankal parameters which appear in this expansion.
The functions involved in the case of a straight extension are identitkd by considering the special
case of a crack composed of two straight branches. placed in an infinite !lody loaded by uniform
forcl'S at infinity; the problem is solved with the aid of Muskhelishvili"s fonnalism and conformal
mapping. The functions describing the effect of the curvature t,r the crack extension arc determined
by studying another special case. identical to the first one eXl'ept that the crad c,'tension is curved;
the method of solution consists of using a perlUrhalive pn~edure with n:spl"Ct to the curvature
p..rameters to reducc the origin..l problcm to a simpler one involving a crack with tW(1 str.. ight
hr:mches. and solving ag:lin the hiller prohlem hy confnrmalmapping, A nlltlleric:t1 strategy using
these results for the prediction ofcr:u;k paths owr :tr!litrary long distances is discussed in conclusion.

INTRODUCTION

let us consider (Fig. I) an clastic body under plane strain conditions cont,lining a cmck
with a kinked and curved extension of length s. let Trill ( - I < 11/ < + I) denote the kink
angle. C the curvature of the m<lin branch at the <lngular point 0 <lnd a*. C* curvature
parameters such that the sh<lpc of the extension m<lY be described by
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Fig. I. General problem studied.
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C*r, = a*r':+· r~-J-o' r':)- I .., ;' r • (! )

where orr r: denotes an orthonormal coordinate system with origin at the angular point
and first axis directed along the tangent to the extension at that point. t It was shown in
Part I (Leblond. 1989); that the expansion of the stress intensity factors (SI Fs) k,,(s) (p = !.
~) at the extended crack tip in powers of s is of the general form

where k;. k;,' ;'. k~" are given (using the Einstein summation convention) by

ki~ f~"I(m)k,: (."

k~' :, = Cr(m}T+a*}/i"l(m)k,,: (4)

k;,'1 = Zr + 1;."(m)h" + C11", (m}k" +a* K,.(m) T+a*: Lr.,(m)k" + C*Mp'l(m)k,!. (5)

In these equations the k"s. T and the hqs are the SI Fs. non-singular stress and coemcients
of the fi terms in the stress expansion at the original crack tip 0: the Fl"ls. Crs. Hr"s. 'p"s.
1,."s. K"s, Lro,s and IHr"s arc functions of the kink angle. which were termed llI/ira.wl in
Lehlond (1989) because they apply to any situation, whatever the geometry and the loading
under study: and Z" is an extra. non-ull/rasal term in the sense that it depends on the whok
geometry of the hody considered and cannot he expressed in any simple and general way.
This term is nevertheless independent of the curvature parameters a*. C* of the crack
extension.

Since G/,(m) 'I' docs not depend on (1*. eqn (4) can he rewritten in the form

(6)

where the lirst term on the right-hand side is the value of k;.' :, for a straight (11* = O)
extension in the direction Trill. Similarly. since L". ',,,,(m}h,,. C1,,,, (m)kq. a* 1\,,(11I) 'I' and
a"'lL""(m)k,, are independent of C*. these terms can he grouped in eqn (5) in order to

express k;,ll as

(7)

where the notation [k:,'ll~~~':0 reli:rs to an extension ha ving a zero C*.
A strategy for numerical determination of crack paths hased on these equations was

briel1y sketched at the end of Part I and will be further discllssed in the conclusion. The use
of this procedure requires of course the detailed knowledge of the functions involvt:d. The
subject of the present paper is tht: determination of the latter.

The methods expoundt:d hert: allow for the evaluation ofall tht: functions which appear
in eqns (3-5). Howt:ver the strategy just mentioned is based on eqns (2). (3). (6) and (7)
which involve only the F,,,,s. ll""s and /'.fpqs. The determination of these essential functions
will be presented in detail. That of tht: G"s ami l\l's will also be thoroughly explained
hecause. as will be seen. it provides a check on the correctness of the equations and an
estimate of the accuracy of the numerical procedure employed inlit/e. With regard to the
remaining functions. some results will be given for the sake ofcomparison with other works
but with only brief indications on their derivation.

The functions F,,'i and C" describe the expansion of the SI Fs in the case of a straight
(a* = O. C* = 0) extension. Since they arc of universal value. they can be determint:d by

t The necessity to consider such singular shar-;s for describmg the actu,d propagation of cracks is estahlished
notahly in Cotterell and Rice (19RO).

: Although usc will be m;lde of the results obtained in Lehlond (191'9 I. no detailed re;lding of this paper is
necessary: the material needed is entirely recalled here.
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Fig. 2. Particular case considered for the determination of the functions F,., and G,.

studying the particular case of a crack composed of two straight branches placed in an
infinite body loaded by uniform forces at infinity (Fig. 2). On the other hand. the (again
universal) functions lIpq (m), K,,(m). Mpq(m) relate to the influence of the curvature par
ameters of the extension. The simplest way to determine them is to study the same particular
case as before. but with a curved extension (Fig. 3).

In the case of a secondary branch of finite length, the first problem (Fig. 2) was
considered in many papers, all of which will not be quoted here. The most remarkable of
these papers, in the authors' view, are due to Dudukalenko and Romalis (1973), Hussain
et al. (1974) and Chatterjee (1975). Using Muskhelishvili's method (Muskhelishvili, 1953),
the first two groups of authors established an integral equation governing the complex
potentials of the problem, but mistakes in the resolution of this equation led to erroneous
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Fig. 3. Particular case considered for the determination of the functions H... K, and M...



results, as analyzed by Amestoy (11)87), The same Integral eljuation was also derIved. and
solved correctly for the first time, by Chatterjee,

Despite the interest in this problem, the results obtained are not of general value and
cannot be applied to other. more comple:( situations (non-uniform forces at infinity, finite
body, etc.) since k,,(s\. for finite s, is not a universal ljuantity (this results from the non
universality of the term Zf' in eljn (5)), The case Ill' an infinilesilllul nlL'l/\illll is more
interesting, since it yields the universal functions L; and G,", Chatterjee \\a~ well aware of
the importance of such an asymptotic study, as aprears in the following sentelKe: "," it i,
necessary to obtain some asymptotic solutions to the inkgral equations pre,ented here, for
small values of r!" (sin the present notation), .. It is hoped that such asymptotic solutions
will be taken up in a future study," This problem \\as studied most convincingly by Bilb\
and Cardew ( 197:') and Bilby l'( ai, (1977) using a previous work by Khrapkov ( 11)71 ) based
on the Mellin transform. and Wu (1978a,b. 1979) using conformal mapping [the results of
this author were confirmed by Amestoy c( (/1. (1979) and Amestoy and Lehlond (19X:')].
Both groups of works yielded the functions FP'I: on the other hand the functions G/. were
studied only by Bilby and Cardew and in a very inclllnplete manner (there is little doubt.
however, that a thorough study would have been possible), The only drawbacks of these
works were that they did not really fulfil Chatterjee's wish because their treatments were
based on the hypothesis of infinitesimal length from the beginning to the end. no connection
with the case of a finite length being made. and also that the universality of the results
obtained was presumably not well realized. let alone proved.

The situation is more critical with regard to the seCl)[ld problem, which involve, a
curved e:(tension (Fig, 3), The only published results, due to Karihaloo ('I ill. (\lJS I), Sumi
('I ill. (19S3) and Sumi (19S6. \lJ9I\. arc the first ()rder (with respect to III) ",pressions of
the "I"'s, A.'"s and i\lI"ls and the zeroth order e:(pre"ions of the rl"I': the question of the
univL'l"sality of these results was raised and partially solved in SUllli's works, The mcllwd
used w~1S a perlurbative procedure with respect to the par~llllclL'l"s III, a* ~Ind C* char
acterizing the deviations of the crack from straightness: this procedure was proposed by
CotterLiI and Rice (19S0), following and e:(tending an earlier work of Banicllllk (1970). In
this approach the original problem is reduced to :1 new one involving a fictitious ,tr~lIght

crack having the same tips as the real. kinked ;lI1d curved one (l-'ig, -l),

Of course, this method also yiLlJs low order (with respect to III) e:(pressions of the
functions ";,,, related to the case of a straight extension. It was rem~lrked by Slimi (1991)
that the second urda formula obtained in that way fur F" dues not agret.: with the t.:xact
result derived by Wll (1979) and confirrned by Alllestuy and Lehlund (19S5). In SlImi's
terms, ."., some second orda terms of the perlllrbatiun s(llution arc simply very gO\ld
approximations of the exact asymptotic hehaviuur given by Wll (1979) and Amt.:stuy and
Leblond (I 9S5), The slight difTcrence or the representations may arise !'rom the r.Il't that
tht.: stress singularities at the branched corner arc disregardt.:d in the perturbatiun analysi ......
In more precise tams, the procedure involves a shift in the eut of the comple\ potentials

Fictitious straight crack

Real
r

crack

Fig, 4, The real and fictitious cracks in the BanldlUk ('oncrdl Rlc'c procedurc
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from the original crack to the fictitious straight one; the latter crack being for instance
supposed to lie above the real one as on Fig. 4. this means that the original values of the
potentials in the region comprised between the cracks are eliminated and replaced by values
obtained by analytic continuation from the lower half-plane through the original crack.
The problem is that such an analytic continuation is not possible. Indeed if the domain of
definition of the complex potentials could be extended beyond the angular point Zoo they
would be regular at that point. i.e. admit a representation as a power series of Z - Zo
for small values of this variable. in contradiction with Williams' (1952) results on stress
singularities at the apex of comers and notches. Because of that fundamental drawback.
the entire Banichuk-Cotterell-Rice procedure becomes illicit if the crack contains an angu
lar point. or more generally any geometric singularity generating a non-~X; stress field. such
as a point of discontinuous curvature for instance. Even though. as will be seen. many of
the results obtained by this procedure turn out to be correct. they cannot be accepted as
such without another. rigorous analysis.

Part A of this paper is devoted to the calculation of the Fpqs and Gps through the
consideration of the particular case sketched in Fig. 2. Though a notable part of the material
here is not new. this presentation is deemed necessary because the more original Part B
makes an essential use of the method and results expounded. The integral equation govern
ing the complex potentials is first derived in the case of an extension of finite length. using
conformal mapping. Then integral equations allowing for the calculation of the Fpqs and
Gps are obtained by letting the length of the extension tend toward zero through suitable
changes of variables and functions. which establishes the desired connection between the
cases of a finite extension and of an infinitesimal one for the first time. Solutions of these
integral equations in the form of series and accurate. high order expansions of the F"'/s and
(i"s are finally provided.

The particular case of Fig. J is studied in Part B in order to derive the v.tlues of the
/I'''/s, I\l's and M'''/s. Since in the expressions (4) and (5) of k:,'~' and k:,", these functions
appe,tr in terms which arc lit/mr with respect to the curvature parameters u'" .lOd C"'. they
can be calculated exuc/~r by using a lirst order perturbative procedure with respect to these
parameters. Following the method sketched in Leblond and Amestoy (1989). the lictitious
n:fert:nce crack is taken to consist of two stwight branches, the secondary one extending
bt:tween the angular point and the tip of the original curved extt:nsion (sec Fig. 3). Thcre
are two essential advantages in this approach with respect to the c1ussical Banichuk
Cotterell -Rice procedure: Iirst. analytic continuation of the potentials from the lower half..
plane becomes possible since the angular, singular point is not crossed in the process;
second, the treatment is not pcrturbative with respect to tht: kink angle lWI so that the latter
can take arbitrary vulues instead of being restricted to small ones. Once the reduction to a
kinked-but-not-curved crack problem is achicved. the solution is obtained by the same
techniqucs as in Part A: conformal mapping, integral eljuations and solutions in the form
of series. Values of the Jlpqs. Kps and Alp"s are tinally calculated through numerical evalu
ation of these series.

In conclusion. the expansion of the stress intensity factors in powers of the crack
extension length studied in Part I and here is combined with Goldstein and Sulganik's
(1974) principle of local symmetry in order to deri ve the expressions of the geometric
quantities (kink angle, curvature parameters) characterizing future propagation of the
crack; in particular. a general equation is given for the curvature of the crack in its regular
(r6"') part. A strategy for numerical predictions of crack paths based on these results is
finally discussed.

PART A: THE CASE OF A STRAIGHT EXTENSION

A.I. Presenlalion of Ihe problem and reduclion 10 an integral equalion
We consider the problem depicted on Fig. 2. Use is made of the complex variable

Z = XI +iXz. The XI-axis is taken to be collinear to the main crack branch. The tips of
the crack are located at 2 ~ = s eimn and 2 4 = - 21 (21 = length of the main branch) and
the angular points at 2 I =0 and Z 3 = O. The stress tensor at infinity is denoted (fXJ.

SAS 29:4-E
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The problem consists offinding Muskhelishvili's potentials <I> and '1', which are analytic
everywhere except on the crack and subject to the following conditions:

<I>(Z) +zit>'(Z) + '1'(2) = Cst

<I>(Z) = fZ+O(I); 'I'(Z) = f'2+0(1)

on the crack;

at infinity.

(8)

(9)

where f and f' are given in terms of the stress tensor at infinity by

(10)

The exterior of the crack Zl22ZJ24Z1 can be mapped onto the exterior n- of the
unit circle ..u in a new =-plane (Fig. 5), by defining [see for instance Dudukalenko and
Romalis (1973)]:

(=_ei~)(= _e-i~) (= -e -'i~)",
2 = w(=) = R e,m~ ---..--- ----. .= z-en

:
(II)

where R and ;x are constants connected to the lengths 2t and s of the crack branches and
the kink angle nm by the relations

Fig. 5. The :.plane.
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( 12)

(13)

(14)

The determination of the function «:_e-i')/(:_ei,»," to be used in eqn (11) is such that
the cut be located along any line connecting the points e12 and e- i, within the interior Q+
of the unit circle. and that its limit for = -+ 00 be equal to unity. The images of the crack
tips in the :-plane are :~ = e'P and :~ = -e-'p. and those of the corner points. :, = e- i,
and: J = e12 (see Fig. 5).

Equations (8), (9) read, for the potentials qJ(:) = <1>(Z) and t/J(:) = 'fJ(Z) in the new
plane:

w(:)- --
(p(:) + = qJ'(:) + t/J(:) = Cst for :e'lIl; (15)

0/(:)

(p(:) = rRe,m':+O(I); t/J(:) = r'Reim':+O(I) at infinity. (16)

The quantily w(:)/w'(:) is readily shown to be equal to _e~im"Q(:) for : E r,; and to -Q(:)
for: E'/I- (t.', whae (t.' is the arc: I:~:1 (sec Fig. 5) and Q(:) is defined by

(:-e")(:-e "')
Q(:) = ---~------c ' .•

:(: _ e'I')(: +e "11
)

This can be written

we:) ,
.' = [-I+(I-e-""')/(:»)Q(:),
w'(:)

where 1 is the characteristic function of the ure r(;:

( 17)

( 18)

1(:) = I if : E r(,', (19)

It follows that eqn (15) reads

(p(=)_Q(:)(P'(:)+(I_e 2im")/(:)Q(:)qJ'(:)+t/J(:) = Cst for :erJU. (20)

The rcsolution of eqns (16), (20) will requirc thc knowlcdgc of the behaviour of the
potentials in thc vicinity of the points e02

• e -i,. e'll and - e -ifl. Let us consider the points ei/l
und -c' ,11 first. Sincc (T,l +(T2~ = 4Re (I>'(Z) and the stresses admit expansions in powers
of IZ-Z21 and IZ-Z~I with exponcnts -1/2.0, 1/2, ... near Z2 and Z4' <1>(Z) admits
expansions in powers of Z-Z2 and Z-Z~ with exponents 0.1/2,1 •... ncar these points.
Now it is c1car from eqns (17), (18) that w'(c i/l

) = w'( _e- ifl) = 0 and one can check that
w"(ei/l):f.O and w"(-e-'fI):f.O; this implies thut Z-Z2=0«:-eifl )2) and Z-Z~=

O«:+e -;11)2). Thus (p(:) admits expansions in powers of :_eifl and :+e- ifl with exponents
0, I. 2, ... , which implies that qJ is indefinitely dijJerentiahle at eifl and _e- ifl. Then
cgns (17), (20) show that. in contrast, t/J has simple poles at these points.

Let us now consider the points e t12
• Williams' (1952) results imply that the stresses

are O(IZ -Z.I<,) and O(lZ -Zll<') near the angular points ZI and Zl' where the ex
ponents C I and C1 are greater than - 1/2. Thus <1>(Z) - <1>(Z I) and <1>(Z) - <1>(Z1) are
O«Z - ZI r'+ I) and O«Z-zlr'+ I), the exponentsci + I and C1 + I being greaterthan 1/2,
and a fortiori positive. Since by eqn (11), Z-Z, = O«:-e-i,y") and Z-Zl =
0«= - ei'y",) where c; and cJ are positive constants, qJ(=) - qJ(e- i') and qJ(:) - (p(ei.) are also
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0«: - e -,,)'",) and 0«: e")'i) with positive exponents c'; and c';. It follows that the function
Ip' is O( (: - e - 1% )'i - I) and O( (: - e'" y', - I) nellr e 'z and e'Z respectirelr. where the consrants
c'; - \ and c'; - \ are grealer than - 1 : this implies in particular that it 'verifies the conditions

lim (:-e::IX)<{l'(:) = O.

Such a function will be termed I\'eakly singular (at the points e" and e -") in the sequel.
Equations (17). (20) imply that IV is also Ireakly singular at these points.

The reduction of eqns (16). (~O) to an integral equation is based on the following
lemma. the (elementary) proof of which is given in Appendix A:

Lemma. Let f and g be complex functions defined and continuous on Q - v II. analytic
on Q' including at the point at infinity.t and such that

f(:) g(:) for :E)/I.

Then f and 9 are constant and conjugate to each other.

To put eqn (20) in the form (21). we detine

(21 )

(22)

where the arc ft,' is oriented from e 1% to e". In the ahove integral. the pole e'" of the function
Q (sec cqn (17». which lies on the integration path. is '"slightly displaced'" IOward n . i.e.
X(:) must in fact be understood as the limit. for I: > O. I: ,-+ (). of the same integral hut with
e'11 replaced by e'/I = e'HI ',j; this is not indic;lted explicitly in eqn (22) because the notation
would become too awkward. On the other hand. the points c'" do not raise any convergence
problems fnr the inll::gral. since eqn ( 17) and the condition of weak singularity of IP' imply
that the integrand vanishes at these points. Then. if XC::') denotes the limit of XU) for
t E f>,t --: E )11. Xl: I ) - Xl: ) is equal to ( I - e~""" )Q(:)<p;(:l if : E'{, by Plcmdj's formula.
and to () if :E 11- f

(" Thus the third term in the lert-hand side of eqn (20) is equal to
X(:' )-X(:)· Furthermore. if we deline, following Muskhclishvili. the analytic fllnc:tion
X.(:) = X( II;}. the term X(: t ) in this expression can be repla":l.:d by X( I: ) = x.(: ).
Finally Q(:) can also be replaced by Q.(~) in the scc:ond term of the left-hand side of eqn
(20). This equation then takes the form

cp(:)-x(: ) = Q~(=) cp'(:)-X.(: )-I/I(:)+CSI for :E II. (23)

Most of the hypotheses of the lemma stated above arc verilied in this equation. Indeed the
left-hand side and the conjugate of the right-hand side arc analytic on Q . Moreover. let
us show that the left-hand side is finite on JII. The only points which raise problems arc ctl>,
ei/l and -e -i/l. Because of the behaviour of <p at these points (sec above), it will sullice to
prove that x(:) has finite limits for:: -- e t .. or e'll in Q . x(e ti') is finite because the term
I_e t'x in the denominator of the integrand in eqn (22) cancels out with that in the
numerator of Q(t) (sec eqn (17». so that the weakly singular behaviour of <p'(t) near ec!:lX
ensures the convergence of the integral. To show that Xl:) is finite for: -- e'P in Q • write
the integrand in eqn (22) in the form fU)/«t-ei/l )(t-:» where J is (CX. on ~ and split
the integral into two parts:

r Q(t)q;'(i) dt = r f(t)-f(ei/l) dt+J(eill ) r .dt .
J.. t-: J.. (t-etfl)(t-:) J~. (t-e,p')(t-:)

t 1\ is recalled that a holomorphic function is said 10 he analytic at ill/inity if it has a finile limit for: - rr:.
1\ then admits a representation as a power series of the variahh: I ': for sufficiently large values of:.
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The first integral in the right-hand side has a finite limit for: - e'fl in n- since the function
(f(t) - f(eifl»/(t - e'fl) is differentiable on rc [see Muskhelishvili (1953)], and so has the
second one since the integration path can be displaced toward n- without crossing the
poles e'P- and::: (en-). Thus the left-hand side of eqn (23) is finite on 111, and likewise for
the right-hand side since they are equal on 'l/. Both of them are, therefore, continuous on
n- vJf/.

There remains the condition of analycity at infinity. This condition is not fulfilled
because of the behaviour of the potentials at infinity (eqns (16». More precisely, eqns (16 1)

and (22) imply that

f/J(:)-X(:) = fReim':+O(1) for :- IX.

Moreover. calculation of Q.(:) yields

(24)

which implies. together with eqn (16:). that

Q.(:)qJ(:)-X.(:)-t{J(:) = -(f+f')Re,m':+O(I) for ;-00.

Therefore. if we add -fRe,m·:+(f+f')Re-,m./; to the left-hand side ofeqn (23) and
- rk c-;';'''T= + (f~+r7j/fei;~i= to the right-hand side (those expressions are equal for
:E 11). this equation becomes

(p(:) - X(: ) - f R e''''':+ (f + f;)R c ""'/=

= Q~T=j(p'(:)-X.(= )-t{J(=)-fRe im'/;+(r+f')Rci''''':+Cst for =ell (25)

and now both the left-hand side and the conjugate of the right-hand side are analytic at
infinity.

Applying the lemma and using eqn (17), we get

upon differentiation this yields

where the function cpo, and the operator !f are defined by

O'() fR im. (f+ f')R e- im
•

cp ::: = e + _2 ;

(26)

(27)

(28)

for any analytic function f. Equation (26) is the integral equation obtained by Dudukalenko
and Romalis (1973), Hussain et al. (1974) and Chatterjee (1975). The lemma also yields an
expression of t{J in terms of cp, which is not needed here.

Once the function cp' is known through the resolution of eqn (26), the SIFs k ,(s), k 2(s)
at the tip of the crack extension can be obtained by using Andersson's (1969) formula:

(29)
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where b is the angle between the XI-ax.is and the tangent to the crack at its tip. which is
equal to rcm in the present case. The determination of the square root to be used in eqn
(29) is easily found by considering the special case of a straight crack (m = 0).

Equation (26) was solved numerically by Chatterjee (1975) through discretization of
the integration path and transformation into a system oflinear equations. It was also shown
by Amestoy (1987) that the solution can be e:,<pressed under the form of a series. The results
obtained for the stress intensity factors will not be repeated here since our prime interest
does not focus on the case of an extension of finite length as considered in this section. but
on that of an infinitesimal extension.

A.2. Expansion in poll'ers of the crack extension length
The asymptotic expressions. for s -- O. of the constants R. ::t. fJ defined by eqns (12).

(13). (14) are easily found to be

I
R =:., +O(s);

r~2 (I -m)m ~ i , '

0: = ,.j (I~=;;,2); 1+'-;;; ,/ s+O(s .);

II = m::t+O(.I·l~).

(0)

(3 I)

Equation (3l) implies that 0: = O( js). Therefore an expansion in powers of s is equivalent
to an expansion in powers of 0:. Such an expansion will be achieved through the following
changes of variable and function:

(33)

The change of variable detined by eqn (33 1 ) maps the domain of definition n of the
complex potentials in lhe :-plane onto the domain 1m ( < 0, - /'C/o; < Re ~ ::;; rcjo: in the (
plane, which becomes idenlical to the entire lower half-plane n in the limit::t -+ 0 (Fig. 6).
The images of the poinls: 1 =e ",:~ =e'I',:J =e"and:4 = -e 'lI are (1 = -I,

II
(~= '=m+O(s), (1=1

a
and

rr: -If
(4 = = O( Ijjs)

CI.
or

rr: +11
= O( -I js)

CI.

depending on the sign of m. It is thus clear lhat the efl'ect of this change of variable is to
"scale up" the vicinity of the arc ft' corresponding to the crack extension in the :-plane, as
desired for an asymptotic study of infinitesimal extensions.

Since the derivative of the function involved in the change of variable (33 1) is non
zero, the behaviour of the function <p' at the points e'll and etl> is preserved in the trans
formation, which means that the jimetion.l· U and V are indcjinitely dijJerentiahle at the
point m and Il'eakly singlliar at the points ± I.

Inserting egns (30). (32) and (33) into egns (26)-(28), pUlling t = e"" and expanding
in powers of ::t, one obtains after a tedious but slraightforward calculation

U({) f' F;
-- +a:V«() = f+ ..... -i:x-«(+m)JI 2 2

where m~ = m-ir., r. > 0, r. -- O. (Note that the weakly singular behaviour of U and Vat

t The reason for the introduction of thc seemingly unnecessary term e ": in eqn (33,) will be explained
below.
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Fig. 6. The '-plane.
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± I ensures the convcrgence of the integraL) Introducing then. following Muskhelishvili.
the analytic functions Ow = U(!j and V(() = V(C). replacingU(1) and V(,i,) by Op.) and
V().. ) on the real interval]- I, + I[, deforming the integration path away from the pole m
onto the semi-circle (denoted C +) IAI = I. 1m ). > O. oriented from - I to + I, and identi
fying tcrms of order exO = I and ex I = ex, we get

(34)

where the functions UO and VO and the operator .91 are defined by

(35)

for any analytic function f. UO can be put in a more interesting form by noting that
f + f'j2 = Hai2 - iaf'2) = (k 1- ik 2)j(2fi!) where k I and k 2are the SIFs at the tip of the
original crack of length 2t:

(36)

Also. Re f' = Hai2 - af'l) = - Tj2 where T is the non-singular stress at the original crack
tip, and 1m f' = a(2 ; therefore VO can be written as

(
af2 iT)

VO(O = - T +"4 «(+m). (37)

Equation (34 1) is Wu's integral equation for an infinitesimal extension (Wu. 1978a, b),
obtained here from that for a finite extension for the first time. On the other hand, to the
best knowledge of the authors, eqn (342) is new.
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The expression of the SIFs in terms of the functions (J and ~. is obtained by expanding
Andersson's equation (29) in powers of:t. Calculation of w"(e 'ff ) to the first order vields
first •

"'ff) t (1 +rn)m ,w (e = e,m" l-rn (1-2irn:t)+O(r);

insertion of this expression and eqns (31 )-(33) into eqn (29) gives

(
I_m)m 2

kf - ikr = 2 ..... rr e ,,,,"--- C(m);
" I +m,

J
.....__._..

II', . II 'j 2rr _ 1-m mk l • -lk z - = 2 ---·__,e-,m. (--) V(m),
I nr I+m

(38)

(39)

(40)

where the k,~s and k),' 2'5 arc defined by eqn (2).
Equations (}4)-(37), (39) and (40) show that the k,~s and k~' 2)S can be determined

quite independently: the k,':s depend only on the function U which can be found from eqns
(34tl, (35,) and (36) where the function V docs not appear; similarly, the k;,12\S depend
onlyon I', and eqns (34 2 ), (35 I) and (37) for this function do not involve U. This remarkable
property can be evidenced only by introducing the seemingly unnecessary term e ,,; in the
change offunctioll (33~); omitting it would result in the introduction ofa term proportional
to U in the expression (.\7) of VH

, and of another analogolls term in eqn (40) for the k;,12'S,
so that the independence property would not appear dearly.

Sincc the function Un depends on the Ihree components of the stress tensor at infinity
only through tim parameters, namely the 51 Fs at the initial crack tip, the same is true of
U and the k,~s (this property does not hold for thc SIFs kl'(s) at the tip of an extension of
finitc length, which arc easify seen from eqns (26) (2lJ) to depcnd on all three components
of a'). This is an illustration of the universality result (3). On the other hand, since I'"
indudes terms proportional to Tunc! a [2, the same is trUt: of V, and it seems then:fore that
the k;,1 21 S should not be simply proportional to T as pn.:dicted by eqn (4) (with a· = 0). In
l~lct the contradiction is only apparent; indeed it can be shown (sec Appendix B) that that
part of V which arises from the a [2 term in eqn (37) (i.e. the function 1/ corresponding to
a zero T) admits the following expression:

(41 )

where the determination of the function «~+ I)i(~ _I)'" is such that the cut be located
along any arc connecting the points ± I in the upper half-plane n + and that its limit for
(-+ % be equal to unity. Equation (41) implies that [V(()Jr- f) is zero at the point ~ = Ill.

so th'it a(" docs not generate any contribution in the expression (40) of the k~' ~)s, in
agreement with eqn (4). This feature represents a good check on the correctness of the
approach used.

It is remarkable that such a simple, explicit solution can be found to a complicated
integral equation. However, the authors have failed to discover similar explicit expressions
for the function U and that part of I' which is proportional to T; this is unfortunate since
it is these potentials that lead to the determination of the functions Fl'q and Gl' which arc
sought. The best the authors have achieved concerning the analytic expression of these
functions is to have obtained formulae that allow for the determination of their exact
expansion lip to an arbitrary order in m (see below).
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A.3. Solutions under the form ofseries and high order expansions of the function Fpq and Gp
In the right-hand side of eqn (35 3) defining.d. the only values of f involved are those

on the conjugate C - of the arc C'" (see Fig. 6). oW can therefore be viewed as acting on the
space of functions f defined and continuous on C- . Furthermore, let 8 denote the subspace
of functions (defined and continuous on C -) verifying the condition that the quantity

(42)

be finite. The functions U and V do lie in this space because of the condition of weak
singularity at ± I. We shall show that if 8 is endowed with the norm II II defined by eqn
(42). d is a conlractant operator on this space. i.e. there exists a constant c smaller than I
such that

IIdfli ~cllfll.

for every fin 8.
To prove (43), let us note that

. sin Imnl M {2 i IdAI }lI,eI} II ~ ., -11111- ax "-II I). II). {12 .
~n \"c C' -m -

(43)

Putting then' =ciy
( -n < y < 0)• ..1. = eill (0 < 0 < n), and noting that 1..1. - ml ~ I -Iml,

we get

It follows th"t ll.clfll verifies "n inequality of the form (43), with

sin IllInlc=----.
n(1 -1m!)

This quantity is smaller than I for -I < m < + I, which concludes the proof.
It follows immediately from the contractant nature of d that the solutions of the

integral equations (34) are given by U =r.;:o .dtt UO and V = r.;:o .r;jtt Vo, where the
series of functions converge in the sense defined by the norm II II introduced above. This
implies that for every {E C - •

...~ ... ~
U«() = L d tt Uo(c); V(C) = L d tt Vom.

n_O n-O
(44)

the convergence of the numerical series being uniform on every subset of C - not containing
the points ± I in its closure. Once these equations have provided the values of U and V on
C - , these functions can be calculated on their whole domain of definition n- (or even, by
extension, on the entire complex plane except on C+) by re-applying eqns (34), now with
( E n -. (or C - C'" ).

Equations (44) can be used to numerically compute the functions Fp'I and Gp {see
Amestoy (1987)]. The results obtained for the Fpqs are in complete agreement with those
of Wu (1978b) and Bilby et al. (1975. 1977). Concerning the Gps, they confirm the only
information available in the literature concerning numerical values of these functions,
namely Bilby and Cardew's (1975) finding that the zero of G2 occurs close to 98°. All these
results will not be repeated here because, as will now be seen, eqns (44) can be used to
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derive more convenient, and considerably more accurate, high order expansions of the Fpqs
and Gps.

Indeed, it is shown in Appendix C that eqn (+.t I) yields the following expression of
kr - ik! (from which the Fpqs readily follow) :

(
l-m)",2 +"

kr-ik!= -1-- LUn ,+", n~O

where

the Xn 5 in these expressions are given by

(45)

(46)

(47)

when: log is the logarithm function defined on C - ilR' by log (I' e· iI
) = In p + j() with

- 3n2 < (J < n/2 and the a:.7/s and p~n' (X)s codficicnts and polynomials verifying the
following induction formulae:

q

p~,II)(X) = xq; p~n)(x) = (- 1)'/ L C~B" ,I';n I)(X) (1/ ~ I) (4X)
f -- t)

(Bq = qth Bernoulli number);

( -I)n2in:[ -r::-~ 2m(p-I)~rc-- m1-1-.· ..1' ....····] 2·.,
In) _ (I),",n- II + In- .)+ .__ In) + _ In -.,

aflq - ---- p- Qp.~-, Qp-I.~.I all l.q- I at,· I ..,
q P P P

for 2 ~ p ~ 2n, 1 ~ q ~ n;

a ln ) - ?a~l'i for O:S:. q :S:. !l,'
Iq - - ()~ - -

(49)

(50)

(51 )

( - I)n - '2in ::r;t:'lT
a\;'J = ao.q .• I for I ~ q ~ II;

q

? 2n n-t (-I)n-I?in: d'·? [ (I
In' - -rn=-TT "" - Cp - 2:::r,;::-rr ( 1 _ 1)pin, _ .... 1 t

al'o=-al'_I,O+£..,£.., (. I) ,-2 a ,.2·'dm"? m "I 2in og
p ,.p •• O ps+

for 2 ~ p ~ 211;

n-I pin) (0)
(n) ( I)n..,· " ,+t ~Qoo = - _l1t £.., 1 a 0.•

•• 0 s+

(52)

;;:.~-:)J
(53)

(54)

(where the coefficients ai:t- I) are to be considered as nil if p > 211- 2 or q > 1/- I).
G 1 - iG1 is also given by similar formulae:
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{

(
sin mn)~ 'f .

r~ = 2n e-Im~y~ 1 n IS even

(Si~:nYy~ if n is odd;

2n ~ dP
[ (I m - I)J

Y. = L L b~~ dmP P~~) - 2in log- m+ I ;
p=Oq=O

(-I)'''in[ 2m(p-1) m
2
_1 J 2

bl~) - - (- I)lJf"=TfI~- + b'" - II +--N" ,II + -~
1'<1 - q P p.q- I P p-I.q- 1 P p- ••q- I P p-I.q

for 2 ~ P ~ 2n. I ~ q ~ n;

bll~ = 2h~~-I) for 0 ~ q ~ n;
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(55)

(56)

(57)

(58)

(59)

(60)

( I)~ - '2in
hl")= - [~+2m~J+2h("-1i for I ~q~n; (61)Oq O,q - I - l.q - I - I.q ~ ~

q

(62)

2 - - 2." I (-lr,12in '-- d'-P [ (I m-I)J,n) _, In"711 __._ P 2 ,~. IT __ 2 _ Inl _ _ , • _•._ .•
h"o---h".l.o+L,L - ('+1) C,.2 b,··2,.rd '-p (m I)Ps • 1 .,' log +1'p '.p,.o p.1 m .In m

for 2 ~ p ~ 2n;

" - I p'n) (0) ~

hln) = (-I)n2I'n ~ -'~'+-!.~·_[h(n--::n+"mi1"~J+2 ~ p'n)(o)hTn-:T)+41l-=-rr·
00 1.. .+ I Ib - - I... 1.. s - I... - 1.11 •

.r - n .~ :t - I

,,-1 pI", (0)
b("l = (_ 1)"4' ~ s+ I lJrn:::T'i- 1.0 I1t 1.. I - I,.,

S.O s+

(63)

(64)

(65)

(with b~-Il == 0 if p > 2n-2 or q > n-I).
Since by eqns (46) and (56), Un and t'" are Oem"), the expansion of the Fpqs and Gps up

to any order n can be obtained by retaining only the first n+ I terms of the series (45) and
(55) and treating all functions of m in eqns (45)-(65) as polynomials of suitable degree.
This has been done analytically up to order six for the Fpqs and three for the Gps. and
numerically up to order 20 for all functions. In the latter computation. the coefficients
of the expansions have been derived under a purdy numerical form. despite the fact that
they are in reality polynomial expressions of 1t with rational coefficients (except for an
additional multiplicative .;;0 factor in the case of the Cps). The results are as follows:

_ 3n
2 2 (2 51t

4
) 4 (n

2 IIn4
119tt

6
) 6 8

F11 (".,) - 1- 8"" + n - ill "., + 9" - n + 15360 m +S.07790m

-2.88312m I0 -0.0925".,12 +2.996".,14 -4.0S9m I6 + 1.63".,18+4.1".,20 +0(".,22);

3n (IOn n)) ( 133n) 591i')
FI ,(".,) = --m+ -+- ".,)+ -"n---+-- ".,'+12313906m 7

• 2 3 16 • 180 1280 .

- 7.32433".,9 + 1.5793m II +4.0216"., I) -6.915m 's +4.2Im I7 +4.S6m I9 +0(m 21 );
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(
32 47t' 11597t~ 1197t6

)
+ --= - ---- - --- + -- m 6 + 10 58'54m 8 -4 78511nl 'o

1:- 9 7200 15360 . ~ .

- 1.8804m l2 + 7.280m ' ~ - 7.591m 16 +0.25m I8 + 12.5m'O +0(m 22 ): (66)

C I (m) = (2n:) 1 '/II' - 47.933390m~ + 63.665987m 6
- 50.70880m 8 + 26.66807m I I)

- 6.0205m" - 7.314m I ~ + 1O.947m 16 -2.85m 18 _ 13.7m 20 +O(m 22 ):

.-"~ r---
- 2v 2rrm + 12,/ 2rrm J

- 59.565733m 5 + 61. I74444m 7 - 39.90249m 9

+ 15.6222m II + 3.0343m '1 - 12.781111 I j + 9.69m 17 +6.62m I9 +O(m'I). (67)

The codlil:ients have in fact been calculated much more accurately than these equations
sccm to indicate; many significant digits have been omitted here because the resulting error
in the value of the function expressed is smaller than that arising from the discarded (0(m 21 )

or O(m':)) term. Since the coellicients of the last few terms appear to be ~ 10. these formulae
can be estimated to provide values of the F;~.,s and Cps with an accuracy better than 10 "
in the interval [0 . XO I of practical interest (SO' being about the maximum observable kink
allgk): this is mllch smaller than the errors which result from the use of conventional
nlImerica I ta bles.

As far as the second order expression of the f~",s is concerned. the present results agree
with those derived by Wu (llJ7lJ). On the other hand. the expression of F" is in cOllllict
with that obtained hy SUllIi (llJlJ I) using the Banichuk Cotterell Rice perturbative
procedure. which reads

77[2 2 ~
1-'22(11I) = 1- 8 m +O(m ).t

As noted by Sumi himself and detaikd in the Introduetion. this discrepancy stems from the
basic inadequacy of the Banichuk-Cottercll-Rice procedure for dealing with non-(6'
cracks. Karihaloo et al. (1981) and Sumi (1991) also derived second order expressions for
the Cps which agree with eqns (67).

A.4. Application to the problem of the conjectural coincidence of the maximum-energy
release-rate criterion and the principle of local symmetry

As an interesting application, we shall now consider the problem of the possible identity
of two classical criteria for predicting the kink angle, namely the maximum-energy-release
rute criterion (Erdogan and Sih. 1963) and the principle of local symmetry (Goldstein and
Salganik. 1974). Among the various criteria that have been proposed, those two have always
aroused particular interest: especially intriguing is the almost perfect coincidence of their
predictions which has been evidenced by numerical calculations of the functions Fp.,. in
terms of which they are expressed [see for instance Bilby and Cardew (1975)]. In fact, the
difference is so tiny that it falls within the numerical errors; thus deciding whether it is real
or not can only be achieved by analytical means. The expansions derived in the preceding
section will now be seen to provide one way of settling the question.

t In order to avoid any amhiguity. erroneous results (or at least deemed so by the present authors') arc
indicated in bold.
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The energy-release-rate for non-collinear crack growth is given by the following exten
sion of the classical Irwin formula:

where E and v are Young's modulus and Poisson's ratio (Ichikawa and Tanaka, 1982).t It
follows that the kink angle predicted by the maximum-energy-release-rate criterion is such
that

ok* iJH
k* I k* • 0

I om + 2 em = .

On the other hand. the principle oflocal symmetry stipulates that the second stress intensity
factor must be zero just after the kink, which reads

k! = O.

Therefore, coincidence of the two criteria would require that

and consequently. since kt and kt can easily (for instance numerically) be verified not to
vanish simultaneously, that

? iJki
k't = 0 => --- = O.. am

In terms of the functions Fpq • this reads

Writing these equations in the form F21 (m)/F22(m) = -kz/k 1 ; F; I (m}/F1!(m) = -k!/k ,•
one sees that for their solutions (in m) to be identical for all values of k!/k" the functions
on the left·hand sides must be equal; equivalently. the equation

F'll(m) ? F'1!(m)
F21 (m) = Fu(m)

must hold for all values of m. Now eqns (66) imply that

These expressions show that the above identity does not hold and therefore that the two
criteria are definitely distinct. The difference only appears when the expansion of the Fpqs

tThis formula is classically established for a straight (deviated) extension of a straight crack. However it is
easily verified to be also applicable if the crack and its extension are curved.
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is carried out up to order six, that is four orders higher than in the most accurate expansion
presently available in the literature (Wu, 1979).

PART B: THE CASE OF A CURVED EXTENSION

B.I. New expression of the stress intensity factors
We now consider the problem defined in Fig. 3, which will be solved by a first order

perturbative procedure with respect to the curvature parameters a* and C*, as sketched in
the Introduction. We denote by sand rrm the length of the fictitious straight extension and
the angle it makes with the XI-axis. Using eqn (I). one easily shows that s and mil are
related to the length s of the curved extension and the angle rrm between the XI-axis and
its tangent at the angular point (see Fig. 3) by the relations

a* /s C*s
In = m+ -'- + -.,- +0(S3/2).

n: _n:
(68)

The perturbative procedure will yield an expression for the SIFs which will appear as the
sum of that for a straight extension of length s in the direction rrri'l and some corrective
terms due to curvature. This expression will not be directly comparable to eqns (2)-(5)

which define the functions H"". K" and M"" which arc sought, since the extension length
and kink angle involved in these equations are sand n:m instead of.~ and mr,. It is therefore
necessary to re-express these equations in terms of.~ and "' using eqns (68) :

k,.(s) = F,,,, (lIl)k" + [G,,(m) T+ a* II,,,, (m)k.,l Js

+ [Z,,(m) + 1"., (m)h., +CJ,,,,(m)k., +a* K,,(m) T+C* AI,,,, (m)k,,]s +0(SI/2)

(where second order terms with respect to a* and C* ha ve been disregarded). This expression
is of the form

where [k"U)I~~i_ C' _ () denotes the pth SIF at the tip of a straight extension of length ~~ in
the direction mn, and the H""s, R"s and /l-1""s functions defined by

_ G~ ") G~
K = K ---=K = K. + --;

" "rr " " 7t

(70)

(71 )

(72)

The expression (69) of the SIFs, which is exact to the first order with respect to a* and C*.
is precisely of the form which will result from the perturbative procedure. It will therefore
be easy to identify the functions H"." R". ,WI''' and the H"qs, K"s, Mpqs will follow from eqns
(70 2), (71 2) and (72 2),
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B.2. Reduction of the problem to integral equations
The equations of the problem in the physical Z-plane take the same form as in the case

of a straight extension (eqns (8) and (9». <I> and 'I' denoting the real potentials. which are
discontinuous across the real. curved extension.

We associate with <I> and 'I' some new potentials <1>" and '1'" by shifting the cut. through
analytic continuation. from the curved extension to the fictitious straight one. hereafter
simply denoted Z,Z2Z), Furthermore. Z being an arbitrary point on Z,Z2Z), we denote
by I'/(Z) the gap between the two extensions. and we expand <I>a and 'P" in powers of /1:

(73)

If Z is on ZIZ2Z), Z+,,(Z) is on the real extension. and <I>[Z+11(Z)] = <I>"(Z) +
<1>"'(Z)/1(Z) +0(1'/2) = <1>o(Z) +<1>,(Z) + <1>0 (Z)11(Z) +0(/12) ; similar equations hold for
<1>' and 'P. Thus the boundary condition on the deviated branch can be written as

<1>u(Z) +<1>, (Z) + <1>;)(Z)I'/(Z) + [Z+ /1(Z)][<I>o(Z) + <1>', (Z) + <1>~(Z) 11(Z)]

+'Pu(Z)+'P,(Z)+'Po(Z),,(2)+0(112
) = Cst for ZeZIZ2ZJ'

The same equation also holds for 2 e Z JZ4 Z l> putting ,,(Z) = 0 in that case. Identifying
terms of order '10 = 1 and /11 = fl. we get the following boundary conditions for the
potentials <1>0' 'Po. <1> I. 'P I :

<1>0(2) + 2<1>0(2) + 'P0(2) =Cst;

<1>1 (z) + Zitl't (2)+ \fll (Z) + [<[>~(Z) + <I>~(Z)],,(Z) + [Z<1>~(Z} + 'Po(Z)],,(Z-) =Cst

(74)

The conditions at infinity are also easily obtained by expanding eqns (9) (for <1>" and
tp") in powers of,,; since rand r' are independent of". one gets

<l>o(Z) = rZ+O(l); tPo(Z) = r'z+O(I); <1>1(Z) = 0(1); 'P,(Z) = 0(1) at infinity.

(75)

Equations (75 J) and (75 4) mean that in contrast to <[>0 and 'Po. <[>1 and 'P 1 are analytic at
infinity.

We now introduce the same conformal mapping as in Part A (eqns (11)-(14». except
for the replacement of sand m by sand m. (n the new z-plane. the equations for the
potentials !p(j(:) = <1>o(Z). "'o(z) = 'Po(Z) are the same as in the case of a straight extension
(eqns (15) and (16» (except for the replacement ofm. cP and'" by nl. CPo and "'0). and those
for the potentials CPI(Z) = <[>1 (Z). "'1(:) = 'PI(Z) read

w(:) -,- -- [CPO(Z) cpo(z)]
(P,(:)+ =(PI(Z)+"'I(Z)+ -;-(-) + = /1(:)

w'(:) w: w'(z)

[w(Z)CP~(Z) w(:)w"(:) CPo(=) "'0(:)-
+ - +-- ,,(z) = Cst for ze"'; (76)

w'(:) 2 w'(z») w'(=)

CPI(:) =0(1); "'\(=) = 0(1) at infinity. (77)

With regard to the zeroth order potentials. the method of solution is identical to that
described in Part A and leads to the same integral equation (26) for CPo (except for the usual
replacements). The expression of'" I) will also be needed here; it is obtained by applying the
lemma of Part A to the right-hand side of eqn (25) :
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(where XO is defined in tenns of qJ~ by eqn (22) with m and qJ' replaced by ni and qJ;). To
get x"..(:) = Xo( 1/:). use eqn (22) and replace t. dt and Q(tl by I it. -dtt" and Q*(I) in
the integral over %' :

In the above integral the pole eill of the function Q..(:) (see eqn (2"i)) must in fact be
understood as e'P " = eilll+lf.~. 6> 0.6 -+ O. Inserting this result into the preceding expression
of t/J1l and using eqn (24). one obtains

(78)

Solving eqns (76) and (77) for the first order potentials will require to know their
behaviour ncar the points el:'~. e'll and -c-'{i. and also that of the bracketed terms in
eqn (76) near e r " and C'lf. The potentials qJ" and III" satisfy the properties mentioncd
in Section A.I for all values of tl. so that these properties apply separately to the zeroth
and lirst order potentials: therefore lp I is illtlt:fillitdy tlil/m:1ltiahlc. alit! l/J I has simple
poles. at e 'il (/1Id _e"'il; (f'; and tVI arc Il'l'uk(v siuqular (If e t ". The behaviour of the
expression [ ... It/(:) +[ .. . )tl(:) in cqn (76) ncar e'iI is easily deduced from that of
If' d=) + (w(:)/(t/(:» (p; (:) + t/Jl (:) : using the properties of If' I' 1/1 1just mentioned and eqns
(17) and (18). one concludes that hoth quantith:.\· hal'l' simpll' poles af e'll. As for the
behaviour of [ .. . )tl(:) +[... J;;(:) ncar e t;\ the simplest reasoning consists in noting that
this expression arises from the analogous one [ ... 1,,(2)+[ .. . )//(2) in cqn (74). Since hy
Williams' (1952) results. <1>;)(2) and tJI;J(Z) are 0[(2 Zl )'IJ and O{(Z -Zl)"1 near Zl and
Z, respectively. where the constants CI and C.1 are greater than -1/2. and since 11(Z) has
simplc zeros at these points (see Fig. 3), [ ... JII(Z)+[ ... /'l(Z) is O(lZ Z",,'l) and
0(12 - Zd' " I) where ('I + I and £'.1 + 1 arc greater than 1(2 ,tnd a.//millri positive, Z - Z I

and Z - Z J being O( (: -e 'T') and 0«: - cit ),,) with positive exponents c; and c:" it follows
that [ ... 1'1(:) + [ ... Jll(:') is also 0(1: - e "I'i) amI O( I: - e" I",) I/mr e "(//1(1 e" re.l'[J(.'('{in:/y

./()r some positire constants c'; alld c'j.
We now define a function XI by eqn (22), with m and qJ' replaced by Iii ami Ip'I' We

also introduce the function

() I 1{[lp;l(l) lp;)(f)] [(1) (.t. )(.P7,(t) w(f)l1lu) ip;)(t) l~;)(t)] ..... } dt
(f'I(:) =.~ .. _... +:::=~ t/(I)+ --=-=_.... - +. 11(1) .

2m,; iLI'(t) u/(I) w'(t)~ u/(t) , u/(r) f-:

(79)

The integrand here has a simple pole at eiP• whieh is slightly displaced toward n" ; this
means that the integrand being put under the form !(t)/(l- eip) where! is rei"" on re. e'il is
replaced by eiP-. On the other hand the integral is convergent at the end points e:t i

' since
the integrand vanishes there. Following then the same kind of reasoning as in Part A. based
on eqn (18) and PlemeIfs formula. we transfonn eqn (76) into

lpl(:)-XI(:-)-lp?(z-) = Q..(z)qJ'l(z)-Xt.(Z-)-t/JI(:,)-IPV:.(=-)+CSf for :E J71.

It is now easy. following the same lines as in Part A. to show that the left-hand side
and the conjugate of the right-hand side are analytic on n" and continuous on n V ill.
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Moreover. all functions in the left-hand side. and all conjugates of the functions in the
right-hand side. are analytic at infinity (for the term Q.(:)q>; (:). this results from the fact
that Q.(:) is 0(:) at infinity by eqn (24). and that (,0'1 (:) is 0(1/::) by eqn (77 1», Applying
then the lemma of Part A and differentiating. we get the following integral equation for the
function q>'1 :

(80)

where !l' is the integral operator defined by eqn (28) (with m replaced by';,). The expression
of t/J I can also be obtained but will not be needed.

The solution can therefore be obtained as follows: solve the integral equation (26) for
q>;); evaluate t/Jo from eqn (78); calculate q>? from eqn (79); solve the integral equation
(80) for q>;; finally get the SIFs from Andersson's formula (29) with q>' replaced by
q>d' = q>o + (,0'1 +O('lz).

B.3. Expansion up to order 1/2 with respect to the crack extension length
We shall now expand the preceding equations up to order fi, or equivalently up to

order (x. as in Section A.2. This will yield the functions Hpq • As remarked in the Introduction.
these functions will be calculated exactly despite the fact that the method u~ed is a first
order perturbative procedure with respect to the curvature parameters. since they appear.
in eqn (4). only in a term linear with respect to a·.

We introduce changes of variables and functions analogous to those defined by eqns
(33):

: = e"'; (P;.(:) = e -i"rjtVo(') + (X! Vo<O +O«(Xz)];

t/J:.(:) = e "'rJIXo(O+O«(X)]; (P'I(:) = e "'rjtVt(O +(X!VI«() +O«(Xz)j. (81)

The properties of the new functions at the singular points arc the same 'IS those of the old
ones: Vo. Vo. VI> VI are inclc:finitely clij.lt'rentiahle. ami Xu has a clouhlet flole. at the floilll
"/ : all jil'e jimctiot/.\· are ll,(,(lkZ~' singular lit ± I.

Expansion of the integral equation (26) for (Po up to order (X I = (X leads to the integral
equations (34) of Section A.2. with V, V and m replaced by Vo• Vo and In. The expressions
of V;. and Xo will also be needed here. The first one is easily obtained by differentiating
eqn (34 1):

(82)

The second one is derived by differentiating and expanding eqn (78) :

(83)

In this expression the integral, originally obtained in the form

has been transformed by deforming the integration path J- I, + I[ away from the pole Iii+
onto the semi-ellipse r-:). =cos 0+ (i/2) sin 9, -It < 0 < 0 (see Fig. 6). This is allowed

t Because it is connected with the dC'ril·alit·C' of"'•.

$AS Z9:4-F
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provided the point ~ lies below r- ;in practice only points belonging to the semi-circle C
will be used.

We shall now expand the integral equation (80) for cp~ in powers of 7. The first task
is to get the expansions of w(=). w'(=). w"(=). Using eqns (II). (30) and (33d (with the
usual replacements). one obtains

(84)

The function «(+ 1)/«(_1»'" here has its cut along any arc connecting the points ± I in
the upper half-plane n + • and its limit for ( -+ 00 is unity.

Next one must derive the expression of the gap '1 between the two crack extensions.
Using eqn (I), the fact that 121 = Iw(=)1 and eqns (31) and (84,). one gets

(85)

where 9 is the function defined on )- I. + I[ by

(86)

All necessary elements are now gathered for expanding cp?' and the integral equation
(80). Equation (79) yields. after a lengthy but straightforward calculation:

Since this expression is 0(7). it does not yield any contribution in the term of order zero of
the expansion of eqn (80). This equation yields therefore, to the lowest order, an integral
equation for VI analogous to eqns (34) for V o and Vo but with a zero "second member":
V, (~) = s/V, «(), where s/ is the operator defined by egn (35 J). Because of the contractant
nature of sl (see Section A.3), this implies that VI is zero. Since VI describes the (first
order) efTect of curvature in the limit 7 -+ 0 (see egn (81 4» or equivalently s -+ 0, this
result means that the asymptotic solution for an infinitesimal extension is independent of
curvature, in agreement with the universality result (3).

Expanding eqn (80) up to order iX' = iX using the previous expression of cp?', one gets

(87)

where
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(88)

In the second integral Uo(i.). U~(i.) and Xo(i.) have been replaced by the analytic functions
l·o(i.).u~(i.) and Xo(i.) and the integration path has been deformed away from the pole
,i,- onto the semi-circle C +. In the first integral it has been deformed onto the semi-ellipse
r --. This is allowed provided' lies below r- (and in particular for' E C-) ; indeed no pole
is then crossed in the process. the quantity g().)!().-,i,) being finite at). = ,i, (see eqn (86».
The determination of the function g here is such that this function be analytic on the unit
disc and reduce to formula (86) on the real interval]- I. + 1[.

The expansion of Andersson's equation (29) is obtained following the same lines as in
Section A.2; using eqn (38) (m being replaced by ,iz). paying attention to the fact that here
the angle () between the XI-axis and the tangent to the crack extension at its tip is not nm
but m1l + ~a* ../~+O(s) = mi, + (a* /2)",!.f+OU). and identifying the terms proportional to
Un and Vn but not to a* with [kp(S))~:=C' _ o. one gets

The quantity VI (,i,) here can be evaluated. once VI is known on C through resolution of
the integral equation (X7), by re-applying this equation with' = ,i,. However. when cal
culating the term Vt!(,i,) in this equation. one must pay attention to the fact that this
quantity is nol givcn by eqn (XX) with' = ,i,. since this point lies above r (sec above).
Putting' = ,i, and evaluating the rcsidue at A= ,i, using eqn (M6). one easily gets

,n ~ (same expression as in) ia* Jt=-~i'! (I +,;,)",12 ~
~. (m) = --- - ---~ ----- U (m)

I eqn (8M). with' =,iz 4 2 (-,i, o·
(90)

(91 )

U" is known to be proportional to the kps (sec Section A.2); the same is true of Xo by
eqn (83). Equations (87). (88)and (90) imply then that Vy and VI (,;') are proportional
to a* and the k"s. The term In e -"'i"[ ... ]}V- in eqn (89) is therefore also proportional to
these quantities. This c:quation agrec:s thus with the form predicted for kp(s) by c:qn (69) up
to order J.v- (i.e. basically with the universality result (4» and allows for an easy evaluation
of the functions li,..,(,i,).

8.4. Expansion "I' 10 orela one lI'ith respeci 10 Ihe crack eXlension lenglh
The calculations necessary to obtain the expansion of the SrFs up to order i. or

cquivalently ~!. are quite analogous to those presented in the preceding section, though
notably heavier; only the basic equations and results will be given here.

Change 0}1/1n('tio/ls:

(P;,(=) = e .i·'[JrUo(O +~!Vo(O+et!t)12 Wo(O+O(~J)];

"'~(=) = e'i":[fiXo(O+~/Yo(O+O(~!)];

(P'I (=) = e -i.,[~! VI (,) +~!(Ji! IV I (0 + O(~) )].

Integral equation for IVo : necessary to obtain the term proportional to i in the expression
of [kp (.5)l.::."= co = o. but not needed here.
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(92)

Integral equation/or WI:

where

(94)

(C below r ). (95)

In this equation II is the function defined by

y y' (I +C)'i' , (I +Iii)'"11(<,) = (1-(, -) I y -(l-lit-) _
-.. I -IJI

Expression of tlU' stress intensity/actors:

(96)

k ( 'k ( (same expreSSion) j' ,[ iC*(I_/ii)n'f2
'I s) -I " .1') = + 17: e If'"~ - ",_' 'I'+'-',',~,' Uo(/iI)- as in cqn (89) /

ia'" (I-Iii)"', _ 4 (I _1;/)I'i'2 , - ] _ _\ '- -.:--.----:;:;: ._.:;; yu(m)+ _, ... -:.. n'I(11I) .1'+0(5-), (97)
j2(1_liI2) I +111 I-III" 1+111

WI (In) being given by eqn (94) with

WO(-) (same expression as in) ia"'!-I=;;,"i(1 +Ii'I)rit
2

(_
m = - - -- -- Vo 111)

1 eqn (95), with' = It) 4 2 I-ni

ie'" (I +ffl)rit- 8 (I-n)2) r-ffZ Un(ti'l)· (98)

It can be verified that the term proportional to (1';"2 in Vo (eqn (41), with (V(C)Jr~ 0 and 111

replaced by [Vo(Olr _ 0 and ni) does not generate any contribution to the function ~Vfi, nor
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consequently to the function WI' It follows that the expression fi e- imK
[ • •• ]s in eqn (97)

contains terms proportional to a* and T on the one hand. and to C* and the kps on the
other hand. in agreement with eqn (69) (i.e. fundamentally with eqn (5). except for the term
a*: LN(m)kq disregarded in the first order perturbative analysis). Like the vanishing of
[V(~)]T- 0 at ~ = m (see Section A.2). this represents a good test of the correctness of the
approach employed.

B.S. Solutions under the form of series and numerical calculation of the functions HfXI' Kp

and Mpq

It would of course be desirable to express the functions VI and WI under the form of
series analogous to (44) :

+:0

VI(~) = L sJ"V?(O; WI(~) = L .clt'"W?<o (V'eC-). (99)
,.,. 0 II - 0

Since the operator .tlt' is contractant on the space & (see Section A.3). establishing these
formulae only requires to prove that V? and W? lie in this space. Let us consider V? for
instance (eqn (88». In the integral over r-. let us deform the integration path onto C+.
(This is feasible since there is no pole at ). = lrl (see Section B.3) and Uo can be extended
to the whole complex plane except on C + (see Section A.3); the value of Un to be used at
).e C+ in the integral is then the limit of Un(/l) for /l -> A. from below.) Using the fact that
the term in factor of I/«A.-lii)().-O:) is bounded on C+ in both integrals and inl.'Qualities
analogous to those of Section A.3. one shows that Max'Ec- 1«(2 - I) VI:(OI is linite. i.e. that
VI: lies in $.

The expansions of the /fp</s. K"s and MI'</s up to a given order in m. just like those
of the Fpo's and Gps. c.m be derived from eqns (99) through truncation of the series
and .malytical evaluation of the integrals. However the calculations implied are even
more enormous than for the Fp</s and Cps. so that the authors have not attempted to
obtain high order expansions analogous to eqns (66) and (67) for the latter functions
and limited their calculations to the first order; the main objective here is not to derive
accurate values of the functions (which will be achieved through numerical computation
of the series (99). see below) but to compare the results with those of other authors. Thus
one gets

I, (7t 16) JM 21 (m)=i+ 0(m-); Mdm)= 4-~ m+O(m).

Similar formulae were derived by Karihaloo et al. (1981). Sumi et al. (1983) and Sumi
(1986. 1991). using the Baniehuk-Cotterell-Rice perturbative procedure; their results are
the same as those above (after correction of some algebraic errors in the first work). except
for the values of H 22 and /II22 which were calculated only by Sumi (1991) and found by
this author to be
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( 211t) ,
H~~(m) = 2- -8/ m+O(m'):

These discrepancies. just like that observed for the function F::. illustrate the fundamental
inapplicability of the Banichuk-Cotterell-Rice procedure to non-'f.' cracks (see the
Introduction).

Some results were also obtained by Sumi (1991) concerning the other functions involved
in eqn (5). These functions are considered of secondary interest by the present authors.
for reasons explained in the Introduction. Calculations analogous to those of Sumi are
nevertheless presented in Appendix D in order to compkte the comparison with this author's
work.

Equations (99) also allow for a numerical evaluation of the functions 1Ir<!' A:
I
, and

Alf"" For the lff<ls for instance. the procedure is as follows: deduce .':'/ (::: from u:; ==
k 'k ' / ~ ! n .. r 0 1 r 11 ~ . ~ ~ tl . '. .

( " -I • :);(-v' IT)•. ':'/ '(11 from .':1 [, I) •• ,:,/. (, II from .,:,/. {. II ..• through Gaussian ll1tegratlon
over the arc C'. using the values of Ui:. dU::. dec:; ... at the conjugates of the Gauss
points of the arc C'. and varying samong the same points (in this way all functions
are calculated at the same points) : calculate Uo on C through suitable truncation of the
series (44,). then at the point lil and at some Gauss points of r by re-using eqn (34,):
evaluate U;\ (eqn n\2» on C : calculate XI) (eqn (l:iJ» on C : usc these results to com
pute v7 on C (eqn (l:iX)): evaluate the (suitably truncated) series (99\) on C in the
same way as the series (44 1): calculate V','(fil) (eqn (lJO» and Vdfil) (eqn (X7)); compute
the term ,,/n: e ,,;," [ ... J/.v due to curvature in eqn (X9). and consetluently derive the
values of the F7I'IS (for k, =:0 I. k, = 0) or 171,:s (for k, =:0 O. k, = I); finally gct the 1I1"'s
from eqn (70,).

The accuracy of the method can he very simply assessed by applying it to the com
putation of the term proportional to rTl" in W, (=0 in theory. see Section HAl and
examining the smallness of the result

Ilowever. this method raiscs a non-trivial numerical prohlem: indeed the accuracy
obtainlCd hy using ordinary Gaussian integration. estimated as indicated above. turns out
to be poor (~IO I). This is because many successive integrations are required. so that
small numerical errors made at each step add up and result in a large Jinal inaccuracy. The
main errors arise from the evaluation of integrals of the form

l.r fO.l d;.
U-(j,·1

for ( close to ± I : the function in the denominator then varies very quickly whlCn ;...... ± I
so that the integration is inaccurate near these points. Simple strategies aimed at improving
the evaluation of such integrals. such as increasing the numb..:r of Gauss points in e~lch

clement or the number ofclements near ± I. prove to be relatively inetlicient ; this is because
the set of ( points used is the conjugate of the set of ;. points. so that the accuracy gained
by using more ;. points ncar ± I is degraded by requiring the calculation l)f more integrals.
The solution which was adopted consisted of accounting for the quick variation of the
function in the denominator by replacing f().) by its average value in each interval o~'

integration p.,. ;.,. I [ (evaluated by st~lIldard Gaussian integration). extracting it from the j
symbol and calculating the remaining integral

1',., d;.

" 0.-0:. 1

exactly.
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Tables I, 2 and 3 display the results obtained with 100 Gauss points distributed among
50 elements; the lengths of the latter decrease toward the singular points ± I according to
a geometric progression the parameter of which is adjusted for every kink angle in order
to optimize the accuracy (estimated as explained above). These tables are easily sup
plemented for negative kink angles since simple symmetry considerations show that H 12,

Hz .. K 2, M 12 , M Z1 are even, and HI" H n , Kh Mil' M 22 odd, functions of m. The
(absolute) accuracy is of the order of 10- 3.

Table l. The Hpq functions

Kink angle (") H II H ll HZI H 12

0 0 -2.250 0.750 0
5 -0.098 -2.236 0.746 -0.189

10 -0.194 -2.196 0.731 -0.374
15 -0.288 -2.\29 0.707 -0.553
20 -0.377 -2.037 0.675 -0.723
25 -0.46\ -1.922 0.635 -0.879
30 -0.538 -1.786 0.587 -1.02\
35 -0.608 -1.63\ 0.533 -1.145
40 -0.669 -1.460 0.474 -1.250
45 -0.721 - 1.276 0.410 -1.334
50 -0.763 -1.082 0.344 -1.396
55 -0.796 -0.881 0.276 -1.436
60 -0.819 -0.677 0.207 -1.454
65 -0.833 -0.472 0.\)9 -1.450
70 -0.837 -0.270 0.072 - IA24
75 -0.1B2 -0.073 0.009 -1.37!!
80 -0.818 0.115 -0.052 -un

Table 2. The K, functions

Kink angle n K I K1 Kink angle (") K I K1

0 0 -1.879 45 2.291 0.043
5 0.381 -1.850 50 2.290 0.377

10 0.751 -1.763 55 2.22ll 0.701
15 1.101 -1.622 60 2.108 1.006
20 1.419 -1.428 65 1.935 1.2ll4
25 1.698 -1.192 70 1.712 1.527
30 1.930 -0.917 75 1.448 1.728
35 2.109 -0.613 80 1.150 1.883
40 2.230 -0.290

Table 3. The M"" functions

Kink angle (") Mil Mu MIl M ll

0 0 -1.500 0.500 0
5 -0.065 -1.491 0.497 -().1I9

10 -0.130 -IA64 0.4llK -0.236
15 -0.192 -1.420 0.474 -0.349
20 -0.252 -1.358 0.454 -OA51
25 -0.307 -1.282 0.429 -0.556
30 -0.359 -1.192 0.399 -0.645
35 -OA05 -1.089 0.366 -0.724
40 -0.446 -0.975 0.328 -0.791
45 -0.481 -0.853 0.289 -0.845
SO -0.510 -0.724 0.247 -0,885
55 -0.532 -0.590 0.205 -0.911
60 -0.548 -0.454 0,162 -0,924
65 -0.557 -0,318 0.119 -0.922
10 -0.560 -0.184 0.077 -0.901
75 -0.557 -0.053 0.037 -0.879
80 -0.548 0.073 -0.001 -0,840
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CO~CLUSIOi"

The detailed expansion of the stress intensity factors being now available, it only
remains to indicate how it can be combined with a propagation criterion for crack path
predictions. The criterion that will be considered consists of two parts:

(i) the principle of local symmetry, which gives the kink angle through the equation
k! = 0 (<:>k z == 0 in the regular, kink-free part of the crack, where the SIFs are continuous);

(ii) the Griffith postulate, which stipulates the intensity of the loading necessary to
effectively promote propagation ria the equation '§ = '!l,<:>kt = k lr (<:>k , = k ,c in the
regular part of the crack). t

It now becomes necessary to introduce the possibility of a variable loading, otherwise
the Griffith postulate cannot be perpetually satisfied as the crack extends. Here we shall
make the simplifying assumption that the loading is proportional, i.e. that it varies only
through multiplication by a time-dependent scalar f.l(t) ; extending the reasoning to non
proportional loadings is straightforward. Equations (2), (3), (6) and (7) are valid for a
constant loading, but this restriction can easily be removed by noting that since the solution
of an elasticity problem depends only on the current geometry and loading, the kl'(s)s can
be evaluated by prescribing a constant loading corresponding to thefinal value of II(t); this
just means multiplying the expression of the kl'(s)s given by eqns (2), (3), (6) and (7) by
this final value. Writing 11(1) as

( 1(0)

we get

k,,(s) = "~"I(m)k'i + {[ki,I,11J;:~'_ n +u-III"I(m)kq+ III 1,11 f~,,!(m)kq}Js

I [k l I II""""· + C'-', ( )k + II ~l([kll ~II'''' + -II ( )k)+1 I' ('. - II It 1"1 /II '! II p ". ~ II a '''I 111 'I

where the notations k", [ki,12IJ~~'_ (l and [ki,HJ~~;':-0 refer to the original loading (prior to
multiplication by 11(t)).

Using the "lbove criterion, one must equate the successive coetftcients of the expansions
of k I (s) and k 2(s) to k" (for the first coellicient of the former expansion) or zero (for the
other coefficients), Thus one gets at the various orders:

Order 0:

Order 1/2:

Fl,(m)
---=
Fzz(m)

f.lfl.2l = [kf I. ZlJ.m +a- H (m)k1 <I- ... 0 ttl {~

k lc

(101)

(102)

t The first equivalence arises from the fact that '!J is proportional to kt: +kf with k! '"0.. ,
: Since in practice JI will be a differentiable function of time. such a -Is.dependence may seem at hrst sigh I

to be experimentally unachievable. This is not so however. bt.-cause it only requires lhat of vary proportionally to
/: just after the kink. which is not unreasonable.
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C* = [k~Il]~~·:Q. J.l(IJ = (J.lH:I)!_ [k(IIJ]~·:o+C*J'[lq(m)kq. (103)
-M:q(m)kq' k lc

These equations provide the geometric parameters of the crack extension, the intensity of
the initialloadimzand the coefficients of the expansion (100) ofJ.l(t). (Inverting this equation,
one gets s as a f~nction of time, which is physically more meaningful.) The expressions for
m, a* and C* are seen not to involve J.lI Ii:) and J.ll I), which means that the rariation of the
loading has no if/jllI/mce on the shape of the path followed by the crack. This property would
not subsist for a non-proportional loading: it arises from the fact that when one applies
the principle of local symmetry at the order Js for instance, the term It( I:) F:"(m)k,,
automatically vanishes as a result of its previous application at the order SO = I.

As a particular case. one may consider the regular «(IX) part of the crack. Then
[k~L:ll~:"= lJ = G:(O)T = 0 (see eqn (67:» so that eqn (102 1) yields a* = O. Furthermore
[k~Il]~~·'::lJ can be identified with the deril'Otil'e [dk :/ds]strai~ht ofk !(s) with respect to s alon9
a strai!J'u extensiof/Jn the direction of the tangent (for a constant loading) : indeed the term
proportional to ,/~ in the expansion of k:(s) along such an extension is zero. Since in
addition .\f:dO) = Ii:! (see Table J), k l = k", and k: = 0, eqn (103\) takes the following
simple form:

2 [dk,]C = C* - _.- _...:.
- - k 1,- ds 't,al~hl'

( 104)

no distinction hct\veen the initial and suhsequent curvatures C and C* being necessary here
since the curvature is continuous. This remark41ble formula may be regarded as the gencral
equatiol/ or tilt' {Jm{JII.tIlltil/.tI crllck in that it provides the value of the curvature at any
regular point. It could in f.lI:t be inferred from other works such as those of Karilmloo ('/
III. ( 191\ I) and Sumi ct al. (Il)XJ). but it was not presented there in the form (104) 'lnd, more
importantly. it was only ohtained under certain restrictive hypotheses, among which the
straightness of the initial crack. (As a consequem:e, the expression found for k:,ll, analogous
to (5). did not include the term CJ""(m)k,, proportional to the initial crack curvature and
was therefore invalid for a curved initial crack.)

Equations (1011)' (102d. (103 1) and (104) allow the envisaging of crack path pre
dictions over arbitrary long distances by step-by-step methods, each step involving numeri
cal computations of stress intensity factors. calculations of geometric parameters of the
future extension. and remeshing operations. One possible strategy consists in: computing
the initial values of k\ and k 2 : evaluating m from eqn (1011); adding a short straight
extension to the crack in the direction 1tm through remeshing; getting [k~II!I]~~I_ 0 from the
value of k 2 at the tip of this extension; using eqn (102 1) to obtain the value of a*;
suppressing the preceding extension, replacing it by another one having an a* equal to the
value detennined but a zero C*, and obtaining C* in a manner analogous to a* ; suppressing
this second extension and replacing it by a third, final one having the values of a* and C*
determined; stopping the extension at an arbitrary but small distance from the original
crack tip. and reiterating the procedure. The intensity of the loading at each step. if desired.
can also be obtained ria the value of It(t) which is equal to the ratio k I,/k I, k 1 being
calculated for the original, reference loading.

Several variants are possible. One may think for instance of skipping the calculation
of C*. However. neglecting this p'lrameter is only possible at the first step which involves
a large, initial kink. Indeed the subsequent kink angles, which arise from the fact that eqns
( 10 II). (102.) and (l 03 1) ensure the vanishing of k 2(s) up to order s only, are very small,
so that the values of a* (which vanishes together with m, as was seen above) are also small
and C* becomes the major parameter governing the crack shape. This feature suggests
disregarding m and 0*. instead of C*, after the initial kink. In that case the path determined
numerically would involve only one large, initial kink; the curvature at all subsequent steps
could be determined from eqn (104), [dk 2/ds],t,aighl being evaluated by comparing the
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original valut: of k~ with that at tht: tip of a smalL straight extt:nsion in tht: direction of tht:
tangt:n!. One drawback of the method would be that in the absenct: of a kink. k ~ would not
bt: obliged to vanish at each step and could thus becomt: relatively large beyond a ct:rtain
distance.

The method proposed corresponds. in essence. to that employed by Sumi for numerical
studies of crack paths in situations of practical interest [see for instance Sumi (1991)].
However there are two notable differences. First. unlike eqns (2). (3). (6) and (7). the
expansion of the kp(s)s used by Sumi was valid only under restrictive hypotheses. as
explained above. Second. the quantities [k~' ~leZ'~ fl. [k~11J;.?;.~·o. [dk :ds],.,,"ght were not
expressed in th~~ form but in terms of the coefficients T. hi' b~ of the terms proportional
to ,0 = I and ....i, in the stress expansion near the original crack tip. As a result. in contrast
to the method proposed here. that of Sumi did not only require the calculation of stress
intensity factors but also that of these coefficients.

Acknmrt..dqt'll/{·f/I-Th~ authors e~press their deep gratitude to Professor Suml for several 'cry helpful dis,usSilms.
and espedally I,)r pointing out the incorreclness of their previous altempt to delermim: the func·tions Hp•• Ap and
;\(N (Amestoy and lebt<'nd. 1<)~61.
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APPENDIX A: PROOF OF THE LEMMA OF SECTION A.I

With the notations and hypotheses of the lemma. the function g.(:) "" g( 1/=) is continuous on 0+ v Jf1 and
analytic on!}'. Furthermore: == Ii: on 11. Thus eqn (21) can be written as

1(:) = g.(:) for : e 11.

Using then Muskhelishvili's (1953) formulae (70.1 ') (for f) and (70.2) (for g.), we get. if :eO- :

~ Cf(t) dt = -/(:)+/('7:) =.~ Cg.(t) dl "" 0,
2m J.. t - : 211C J.. 1- :

where the arc'" is oriented anticlockwise; it follows that 1 is a constant. Furthermore Muskhelishvili's formu\;le
(70.2') (for f) and (70.l) (for g.) yield, for :eO+ :

I f. f(t) dt 1 f. g.(t) dt-:- --=/('7:)=-:- --=g.(:),
211t .. t-: 2m.. 1-:

so that 9 is also constant and conjugate to f.

APPENDIX B: PROOF OF EQUATION (41)

I>roving eqn (41) requires th;tt it is shown th;tt the function w({) dclim:d by the right-h;tnd sidc verifies the
integral equiltion (34 1) with the "St.'Cond member" Vo(,) .. - (a:'1/2)({ + m), i.e. that

a"'[ ({+I)'"J.<:IwlO '" -1..: '+m+(m-{) {-=I (for{en"), (BI)

the determiniltion of the function «, + I )/(' -I»'" being such that the cut be located on any arc connecting the
points ± I in n' ilnd thilt its limit for' - Cil be equal to unity.

Using eqn (35,). deforming the integriltion path back to the real interval I-I. + II, and noting thilt w(i.) is
given by the same formulil (41) as 1,'(0. but with the cut of the function «).+ I )/()'-I»'" along some are connecting
the points ± I in n" instead of n' so that «).+ I)/()'-I»'" '" e-...·«I +)')/(I-)')}'" for ).eJ-I, + 1(. one gets

a",sinmltf+1 ).2_1 (1+).)'"
.cIw{') '" I. 41t _, ()._,)2 1_), d)..

The change of variable u == (I + ).)/( 1-).) leads. after a bit of algebra, to the following expression:

211~, sin m1C C+-o u"'+' du

.tlw(O"" - 1t«(_1)2 )0 2( '+I)l'
(u+ I) u+ -.-I

t,-

The value of a closely related integral can be found in Gradshteyn and Ryzhik (1965) (formula (3.223.1» :

C'" u,o'du =_It_a·-'-b·- I

)0 (u+a)(u+b) sin pit b-Il

(B2)

The determination of the power functions in this formulil is the usual one with the cut along the line of negative
reals. Differentiating this expression with respect to a and b. we get

Inserting this result with p '" m +2. a = I and b =(, + 1)/(' -I) into eqn (B2), one obtains, after a few manipu.
lations, eqn (BI) for .tlw({), with the desired determination oflhcfunction «,+ I)!({ _I))'".

The function ..·(el "" (V(C)Jr_ °defined by eqn (41) possesses a nice mechanical interpretation which explains
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Its b-:k of mflu.:n-:e upon the SIFs. Ind~'ed it is well known from the work of Muskhehshvili that adding a term
of the form iAZ (A bemg reall to the potential $(Z) does not change the stresses. becaus<: it repres<:nts a rill:id
rot;l!lon. Let us transform $ in that way: then we add IAw(:) to CPt:). and therefore iAw'(:) to (/l'(:). Expressing
thiS quantity in terms of: using eqn (33,1. and e~panding the result in powers of :1:. one finds that

Equation (33:) then shows that a term ..1(171- C)(~ ..;..ll (~_l))M is added to V(C). and this is precisely the form
of[ ~.(~1] r ~ o. This function therefore only represents a rigid rotation. which is why it has no effect on the SI Fs.

,\PPE:-;OIX C: PROOF OF EQUATIONS (ot5H65)

The proof of eqns 145 H 54) will b.: presented in detail. but only brief comments will be given in fine on that
of eqns (55)·(651. which follows essentially similar lines. Our starting point is eqns (35.,1. (36), (39) and <.t4, I
The last equati,>n was proved only for; E C'. but it is easily verified to be also applicable to the calculation of
C(m). and in l~ld to that of C(~) at any point CE C - C'.

StC!' l. In orckr to -:om:entrate on the major ditliculties. we first "e~tract" some uninteresting factors from
the equations just menti'>ned by introducing the following set of fun-:tions. defined on C - C· .

x,,(:) = I.

It IS then easy to show by Il1dm:tion that

(ell

if" is even

if" is odd.

('omhining this result with e«ns n'l) and (ot4, I. one gets eqlls 1451 and (46), with x. =x.(ml. The problem is thus
reduced to caku!;lting the \,(:ls.

St,'!, 2. One discovers. upon study of the tirst \',(~)s. that calculation of these functions essentially requires
the evalnation of the integrals

0.1.2.... ). (e2)

where log I is the log'lfithm function defined on C - i:~ by log' (1'.:''') "" In {J + iO with - rr/2 < /I < 3rr/2. Having
easily calculated (-),,(~j and encountering the integraI0,(~). Wu (1979) wrotc that "unfortunately the appearance
of the logarithmic term ( .(makes the e~plicit evaluation of the higher order terms impossiblc". This statement
was obviously motivated by the fact that functions of the form (log xl/lx-a) must be integrated to get 0 d~)

and th;lt im/"ji"il<' integrals of this kind arc not e~pressible in terms of elementary functions. It will be seen.
however. to be over·pessimistic: indeed 0, (0. and more generally the 0,({)s. are definite. calculable integrals.

We shall begin by evaluating th.: real integrals

First. it is obvious that

f·'( 1-;.), .J, "" In-
I
-. d....

• j + ...
(C3)

(C4)

:I " (k ~ I) remains to be calculated. Writing it in the form 2J~ ...• pUlling t = (I-i.)/( 1+ i.I, and integrating
hy' parts using 1-1'(1 +1) as an indefinite integral of HI +t)', we get

.1, = -l 1"1 (In I~"~I
.• ." (I +0' [( I) 'J'_I f1(1nf)'-'-ldl4 1- ..... (In i)" -8k --'---.

1.,.1 ,_ 0 0 1+1

The t~rm [ ... (:: ,\ is zero and the v;IIue of the last int~gral is (-I)' -'«(1-2'" ')/2k1rr"B ll where 8., is the Ifth
Bernoulli numher (Gradshtcyn and Ryzhik. 1965. formula 4.2712). Therefore

(C5)

Since Bn = I. 1- 2·' = 0 for If = I .\IId B" = 0 for If odd ~ 3 {sec Gradshtcyn and Ryzhik (196511. eqns (C41
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and (C5) can be condensed into the following single formula:

Step 3. We shall now calculate the integrals

497

(C6)

«('7)

where log+ is the function introduced above. First we deform the integration path onto the real interval J- t.
+ 1(. This does not raise any problem since log" is defined on C - iR - and (,i - \) O. + \) E iR - only if ;, E C- .
which does not occur during the deformation. We then note that if;' E] - I. + I[. (i. - I)I(,i + I) E ) -A). O[ so that
log+ «i.-l)!().+ 1» = In «1-),)/(1 +l»+in. Using Newton's formula and eqn (C6), we thereby obtain

4 •
/. = L C;(in)·-rJ, = 4(in)9 L C;( -1)'{1-2'-I)B,

,..0 ,_0

Now the first I: is nothing olher than 8.(-I), where 8.(X) denotes the qlh Bernoulli polynomial [see Gradshteyn
and Ryzhik (1965»). Similarly, the second I: is equal to 8.( -1/2), Furthermore Gradshteyn and Ryzhik's formula
(9.624) yields 8q ( -I) - 2·- 18.( -1/2) = 2.- 18 q (since 8,(0) = 8,). It follows that

.I. = 2( - 2in)·8,.

Sup 4. A differential equation for the functions @.«) will now be exhibited by calcul'lting the integral

Scctlndly, assuming q ~ I, integrating by Jl<lrts and writing 21 = 2()' - 0 + 2C. we obtain

(C8)

[
11_1 ( ;'-I)'l··1 1U ( ;'-1)"Jf' "" -7~-' log· -- + -.- log' -.- di.1.-' ),+1 -._1 c·,{-' 1.+1

r ( ;'_I)"-I'l dl.+)c. log· ),+1 :q_,·=2,1,+2,e.(C>+2q@._,(~),

COnlJli1rison b.:twcen these results yields

Step 5. Equation (C9) will now be usc:d to prove inductively that

({eC-C' ),

(C9)

(CIOj

where 8.(X) denotes the qth Bernoulli polynomial as above and log - the logarithm function ddincd on C - iR •
by log' (pc·a) = In p+ iO with - 3n/2 < 0 < n/2.

For q ... 0, eqn (C2) immediately yields 8 0 (0 ... log «{ -1)/(' + I», and the dctermination of thc logarithm
is readily verified to be that of the function log - defined above. This result agrees with eqn (CIO), sincc
8 1(X) :: X -1/2 and 8 1 = -1/2 [see Gradshteyn and Ryzhik (1965)]. let eqn (CIO) now be assumt:d to hold for
q-I (q ~ I). To prove it for q. let us call =.«() the function defined by the right-hand side and evaluate E~K)

using the property "'.I(X) -= (q+ 1)8.{X) (Gradshteyn and Ryzhik. 1965, formula 9.623.3) and eqns (Ca) and
(CIO) (for q-l):

.I.+2qS._I(O
'1_1
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Comparison with eqn (C9) shows that =~(,) = 0~(() and thus that =.«() = 0.(,) + Crt. The constant is easily
identified by !ctung , tend to infinity: then 0.(,) - 0 by eqn tC). and log - ((, - I rI( + I) _ log- (I) = 0 so
that =.(') - 0: therefore the constant IS zero. It follows that =,(,) = 0.(,). which establishes eqn (CIO) for q

Step 6. The expression for the 0,(:;-)s now being known. it only remains to connect the x,(,)s with them.
With trial and error. it is found that the integrals defining the x,(,)s can be most naturally expressed in terms of
certain combinations of the 0,(,)s of the form

j" ,,(I I • i. - 1') di.
1", .,,-Iog -.- -.-.

c' _Ill A+ I 1.-,

and their derivatives. where the 1";' (.\1s are polynomials defined by eqns (48) of the text.t
We shall first establish inductively the following elementary properties of this set of polynomials:

I"(~'(X) = I: I";'·(.n = (_Ij"ql";,,(X) (q ~ I). (CIl)

The proof of eqn (Cll,) is trivial. Equation (CII ,) for n = 0 results immediately from eqn (4S,). If it is true for
II - I. eq n (48,) yields

,
I";"(X) = (- I)' ::: C,B, .,( - I)"" ,1":.', "(.n.

'" ,
Since ,C~ = qC~- '" this can be wrillen. pUlling s = , - I :

1l--1

1";"(,\1 = (-I)"q(-I)'" L C~_,B,_,_.I":-"(X) = (-I)"ql".... ,(X).
, .. 11

which estahlishes eqn (C II,) for n.

Step 7. We shall now prove inductively that

J. /"" (~-IOg '~) ~~ = ~~.:~ [1""" (- ..t...l()l' - (-=-1) -/"" "(0)] (( E~::- C').
c' '~11l A+I A-( q+1 _ ", 2ill eo (+1 'I"~

(CI~)

For n = 0, this equation reduces to eqn (CIO). hecause /"."(.\') = ( - I )'/J,(.\1 hy the dcfinitllln of the Bernoulli
polynomials. Lel us assume it to he correct for n - I (n ~ I). For the index II, the integral considered is equal. hy
eqn (4X,), to

'f... (-I)" '2ill[ (I '-I) ](-I)' L C:'Il, , -I'" I~':, -,. log _ I -1":.',(0) .,_" ,+ _Ill ~+

Sil1l:e C:,/(, + I) = C:,: ',!(ll + I), this quantity can he cxpresscd. putting s = , + I, as

(-1)"2ill ." [( 1 '-I) ]---- (- I)'" "C' Il /"" -- log --- _/~n,(o)
if + I I ~ll 14 t I <J" I, I 2in: C+ 1 '

(the term (.f = 0) in the ahove sum heing zero by eqn (C II,», which is identical to the right-hand of elln (e 12)
hy eqn (4X ,).

Dilfen:ntiating eqn (C 12) with respect to' using eqn (C II,), we also obtain

f (I ;.-1) di. 2 ~ "( I (-I)/"" ---log '.--_. -- -- 0- =._-_. f ". - o-·-log - --
c' • 2in A+I U-O' (-I " 2in '+1

(CI3)

Step X. The trickiest rcsults arc now cstablished; the two remaining steps arc somcwhat tedious but
straightforward. First wc c'llculatc an integral analogous to that in elln (C 12) but with ().' - 1)i( (i. - m)(A - 0')
instead of I !l'. - C). This is easily done be decomposing this rational function into partial fractions and using ellns
(CI2) and (CI3):

2 n< '''( I '-I)+ --," - -Iog---
C-m • 2in C+ I

(CI4)

t These polynomials offer strong similarities with the so-called .Qcne,ali;ed Bernoulli polynomials IJ';'(X) (see
for instance Fletcher el al. (1962), p. 69J. which verify the same induction formula (48,) except for the (-I)'
factor. In fact these sets of polynomials can be shown to be tied by the relations 1";' (X) = IJ';'(,\' +11;2) for II even,
IJ';'((II+ I) '2 - .\1 for n odd.
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(CIS)

Slt'P 9. We shall now use eqns (C1·lj and (CIS) to prove inductively that the functions x.«() admit the
following expression:

(CI6)

where the a~~'s are coetIicients which depend on m. This equation is obviously true f~r n == 0 with {/~ri == I. which
is identical to eqn (49). Let it be assumed to hold for n-I (n ;<1; I). One then gets, usmg eqn (CI I ):

Now the ct1elftcienls of the polynomial P',,'~ Hen being real,

;lI1d it is easy to ched thaI I;;g((,t' ':"Ti7{..l'+T)j '" log> «).-I )/(). + I)) for ). E C' . Therefore the ahove integrals
are prt.'t:isdy "I' Ihc "trln of Ihose on Ihe left-hand sides of eqns (CI4) and (C 15). Using these t.'quations, one !inds
that ,{.(C) admits an expression of the type (Cit,), the coellicients 0;::.' being given in terms of the 0:; "s byetjns
(50) (54).

Since eqn (eI6) docs nol apply for ('" m, it remains to derive the expression for x.(m) ;: t •. This is easily
done by expanding Ctln (CI6) in powers of C-tn, which is i1l1ow'lhle for sulliciently sm.lll villues of this quantity:

If Ol1e takes the limit C- m, Ihe divergentlerms (r < p) must be zero since x.(O is regular at ( == m (this is obvious
from eqn (CI 1», the terms (r > p) vilnish, and one therefore gets eqn (47). This concludes Ihe proof.

With regard III the functions G, (eqns (55)-(65)), one is led to introducing i1nother set of functions Y.(C)
which verify the same induction formula (CI I ):l5 the X.(')5, but with )',,(0 = {+m insh:i1d of L These functions
cOIn be cxprcssed under 01 form similar to eqns (CI6) and (47), but with p now ranging from -I (instead 01'0) to
n in the expression ofy.(C)" # m:

:. • p'b'" (I '-I)
.I'.(~) == L L (- ' If), P',," - 2-:- log-.-+I ({jC,' # m)

, __ ' •• 0 ~-m lit ~

(where (-I)! iE! I by definition);

z,.. d" [ (I m-I)JY. iE! y.(m) == L L b:;' - 1".0' - :;:-Iog - -- ,
, • o•• 0 dn" .llt m + I

where the /I:;'s verify eqns (58) ·(65). The integrals needed in the proof include those i1hove plus a new one.

r "'.J ( I I >). - I) d'J.. r. 2ilt og I+i ...,

which is easily evaluated by letting' tend to infinity in eqn (CI2) and identifying terms of order {",

APPENDIX D: COMPARISON WITH SUMrS RESULTS FOR THE NON·UNIVERSAL TERM
Zp AND THE FUNCTIONS Ipq(m) AND Lpq(m)

In addition to the rt.'Sults mentioned in Sections A.3 and B.S, Sumi (1991) obtained the following formulae
for the non-universal quantities Z, involved in eqn (5) :
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In these equations the fNs arc coefficients which depend on the "!t,,l.. gnml<:try l)f the bpdv and the mitial .,;r<Kk
and on whit:h portions of the boundary have tractions versus displacements prescribed (ihev are nl/n.rmicen,,1
quantities). but are independent of the geometric parameters m. a" and C" ('I' the crack e~tens'ionand also of the
loading. Sumi also derived the following low order expressions of the unl\<:rsal functions Irqlm) and Lp.,(m):

I 511'm'
[!l(m) = 2+-16- +O(m

J
):

5~nt 1

I,,(m) = - 4- +O(m):

27 ,
[!l(m) = - 32 +O(m'); L, ;(m) =Otm);

(D1)

6.\ 2 •
Lu(m) = - 3~ + +O(m').

,. It
(1m

With n:g;mlhl the 7.,.s. the following formula (in l1Iatri~ notation) W.IS derived by Lehhlnd (II)XI)) from tIll:
Iluecklwr Rice weight function theory:

[7.1 = [F(lII)l!fl/F(m/l' [FIlii) Ilk I. (Dol)

where (XI' denotes the translwse of [X). Inserting the second order expressIOns of the I·;•• s deriwd hy Wu t 11)71)
ami eonlirmed here [see clins (66)\ into this formula. one ohtams

/, 311m c 31t'm' c }.
:2 K,,+ :2 K" k,

.;. { -llmf" + [I.;. ( -X+ I)~}II'.If\! + 3rr~!JI: [" ~ )~!JIk:,}k:;

Z, .~ {rr~, f" _ 1t'( f" + [1- (4+ 7~')IIl']f" -1tmf,,} k,

+{_ll'~1I~f"+7f,,-::m,(,,+rl';'(-11+ '.I~}":Jf"}k:. (D5)

The term proportional to f"k, in Z ,. and those proportional to f"k, and f"k: in 7. ,. afc dllkn:nt from those
in ellns (1)1). These discrepancies arc nol very surprising since eqn (I)4i inVtllvcs the function F" and Sumi's
result for this function differs from that given by Wu (1'.17'.1) and confirmed here (see Section A.31. It must be
noted however th~ll the dilfercnces cannot be complelely e.~plained in thaI \\;ly; indeed. insertmg Sumi's v.t1ue for
F" inl'l etln (Dol). one still docs not obtain eqns (01). (In other words. Sumi's results are incompatihle with the
Ilueckner Rice weight function theory. which is Ihe basis of eqn (04).

It conspicuously appears in eqn (5) that the functions I",,(m) rdate III the value of the k~"s for a strail/ht
<'xtNISi"f/ of a strwflllf if/itial crack (C = a- = C" = 0). One way to determine their second order expressions IS

to pursue the expansion in powers of s presented in Section A.2 up to order s. and to exp"nd the resulting formula..:
up to the second order with respect to m. In that way one derives the values of the qUitntities 7.r + I,"(m)h., It
rem~lins to subtmct the 7.,s. This can be done by using eqns (D5). provided the values of the non,univers:d
coellicients f,. arc known for the case under study ofa straight crack in an infinite body 10~lded by uniform forces
at infinity. To derive these values, one can usc the fact that the f(""s arc connected with the derivative of Ihe slress
fidd with respect to the length of the crack. when the lalter is elttended in the direction of its tangent [sec Leblond
(1989)I; it is easy to obtain this derivative in the case considered since in the absence of a kink. the solution is
quite classical. The values of the f,..,(m)s derived in this manner are identical to those given by eqns (02). except
for the value of I,,(m) which reads

Finally. the zeroth order expressions of the Lrq(m)s can be obtained hy putting 'till = 0 and e~tending the



Crack paths in plane situations-II SOl

perturbative analysis or Section 8.2 up to the second order with respect to a·. The results are the same as those
orSumi (eqns (03» except ror the expression or Ldm), which is round to be

Once again, the reason ror all these discrepancies lies in Sumi's use or the Banichuk-Cotterell-Rice perturbative
procedure ror dealing with a non-"-'" crack.

SAS 29:4-G


