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Abstract—In a previous paper, we established the general form of the expansion of the stress intensity
factors in powers of the crack extension length. for a crack propagating in a two-dimensional body
along an arbitrary kinked and curved path. The aim of the present paper is to calculate precisely
the various functions of the geometric and mechanical parameters which appear in this expansion.
The functions involved in the case of a straight extension are identified by considering the special
case of a crack composed of two straight branches, placed in an infinite body loaded by uniform
forces at infinity ; the problem is solved with the aid of Muskhelishvili's formalism and conformal
mapping. The functions desceribing the effect of the curvature of the crack extension are determined
by studying another special case, identical to the first one except that the crack extension is curved
the method of solution consists of using a perturbative procedure with respeet to the curvature
parameters to reduce the original problem to a simpler one involving a crack with two straight
branches, and solving again the latter problem by conformal mapping. A numerical strategy using

INTRODUCTION

Let us consider (Fig. 1) an clastic body under plane strain conditions containing a crack
with a kinked and curved extension of length s. Let mm (~1 < m < + 1) denote the kink
angle, C the curvature of the main branch at the angular point 0 and «*, C'* curvature
paramcters such that the shape of the extension may be described by

Prescribed force 1

Prescribed displacement

Fig. 1. General problem studied.
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where O, ¥, denotes an orthonormal coordinate system with origin at the angular point
and first axis directed along the tangent to the extension at that point.t It was shown in
Part [ (Leblond. 1989)] that the expansion of the stress intensity factors (SIFs) k() {p=1
2) at the extended crack tip in powers of 5 is of the general form

k() = kX +kL 7O s+As+001 Y. (2)
. . R S | O M st O P B : .
where A, &' 7' k1" are given (using the Einstein summation convention) by

/\';* == {rq
/\-;,! L GP(,N)T+([*[I;,'((”')k‘,: (4)
k" = Z, 4 1, b, + CJ, (m)k, +a*K,(m) T+ a**

)k, {3

L, (m)k, + C*M, (m)k,. (3
In these cquations the k,s. T and the s are the SIFs, non-singular stress and coetlicients
of the \/r terms in the strus expansion at the original crack tip 01 the .5, G5, H,.s. 1,5
Jpse Kos. Ly,s and M,,s are functions of the kink angle. which were tumed universal in
Luhlond (1989) because they apply to any situation, whatever the geometry and the loading
under study ; and Z, is an extra, non-unirersal terny in the sense that it depends on the whole
geometry of the body considered and cannot be expressed in any simple and general way.
This term is nevertheless independent of the curvature parameters «*, C* of the crack
extension,
Since G, (T does not depend on a*, eqn (4) can be rewritten in the form

RIS RERMIED 8

AU = [k g a0k, {6}
where the first term on the right-hand side is the value ot &) for a straight (a* = 0)
extension in the direction mm. Similarly, since Z,. 1, (m)b,. € ,,q(m)l\ a*K,(m) T and
a** L, (m)k, arc independent of C*, these terms can be grouped in egn (5) in order to
express kL' as
(7

KD = (KD g + C* AL, (m)k

" ¢
where the notation [&4"}2%, refers to an extension having a zero C'*.

A strategy for numerical determination of crack paths based on these equations wis
bricfly sketched at the end of Part I and will be further discussed in the conclusion. The use
of this procedure requires of course the detailed knowledge of the functions involved. The
subject of the present paper is the determination of the latter.

The methods expounded here allow for the evaluation of ¢/ the functions which appear
in eqns (3-5). However the strategy just mentioned is based on egns (2). (3). (6) and (7)
which involve only the F,.s. /s and M s. The determination of these essential functions
will be presented in detail. That of thc. G,,s and K,s will also be thoroughly explained
because, as will be seen, it provides @ check on the correctness of the cquations and an
estimate of the accuracy of the numerical procedure employed in fine. With regard to the
remaining functions, some results will be given for the sake of comparison with other works
but with only brief indications on their derivation.

The functions £, and G, describe the expansion of the SIFs in the case of a straight
(a* = 0, C* = 0) extension. Since they are of universal value, they can be determined by

+ The necessity to consider such singular shapes for describing the actual propagation of cracks is established
notably in Cotterell and Rice (1980).

+ Although use will be made of the results obtained in Leblond (1989), no detailed reading of this paper 1s
neeessary  the material needed is entirely recalled here.
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Fig. 2. Particular casc considered for the determination of the functions F,, and G,.

studying the particular case of a crack composcd of two straight branches placed in an
infinite body loaded by uniform forces at infinity (Fig. 2). On the other hand, the (again
universal) functions #H, (m), K,(m), M, (m) relate to the influence of the curvature par-
ameters of the extension. The simplest way to determine them is to study the same particular
case as before, but with a curved extension (Fig. 3).

In the case of a secondary branch of finite length, the first problem (Fig. 2) was
considered in many papers, all of which will not be quoted here. The most remarkable of
these papers, in the authors’ view, are due to Dudukalenko and Romalis (1973), Hussain
et al. (1974) and Chatterjee (1975). Using Muskhelishvili’s method (Muskhelishvili, 1953),
the first two groups of authors established an integral equation governing the complex
potentials of the problem, but mistakes in the resolution of this equation led to erroneous

2f

Fig. 3. Particular case considered for the determination of the functions H,,, K, and M,,.



168 M. AMestoy and J. B Lestosp

results, as analyzed by Amestoy (1987). The same integral equation was also derived. and
solved correctly for the first time, by Chatterjee.

Despite the interest in this problem. the results obtained are not of general value and
cannot be applicd to other. more complex situations (non-uniform forces at infinity. finite
body. etc.) since &,(5), for finite 5. is not a universal quantity (this results from the non-
universality of the term Z, in eqn (3)). The case of an infinitesimal e¢xicnsion is more
tnteresting, since 1t vields the untversal functions F., and G.. Chatterjee was well aware of
the importance of such an asymptotic study. as appears in the following sentence: ™. it is
necessary to obtain some asymptotic solutions to the integral equations presented here, for
small values of 7 (s in the present notation). “1t is hoped that such asymptotic solutions
will be taken up in a future study.™ This problem was studied most convincingly by Bilby
and Cardew (1973) and Bilby ¢z al. (1977) using a previous work by Khrapkoy (1971) based
on the Mellin transform. and Wu (1978a.b. 1979) using conformal mapping [the results of
this author were confirmed by Amestoy et al. (1979) and Amestoy and Leblond (1983)].
Both groups of works yielded the functions F,,: on the other hand the functions G, were
studied only by Bilby and Cardew and in a very incomplete manner (there is little doubt,
however, that a thorough study would have been possible). The only drawbuacks of these
works were that they did not really fulfit Chatterjee’s wish because their treatments were
based on the hypothesis of infinitesimal length from the beginning to the end. no connection
with the case of a finite length being made. and also that the universality of the results
obtained was presumably not well realized. let alone proved.

The situation is more critical with regard to the second problem. which involves a
curved extension (Fig. 3). The only published results, due to Karihaloo er af. (1981), Sumi
cf al. (1983) and Sumi (1986, 1991), arc the first order (with respect to m) expressions of

the 1,50 Kosand A s and the zeroth order expressions ot the £, s 0 the question of the

4
universality ol these results was raised and partially solved in Sumi’s works. The method
used was a perturbative procedure with respect to the parameters o, a* and C* char-
acterizing the deviations of the crack from stringhtness : this procedure was proposed by
Cottercl and Rice (1980), following and extending an carlicr work ot Banichuk (1970). In
this approach the original problem is reduced to a new one involving a fictitious striaght
crack having the same tps as the real, kinked and curved one (g, ).

Of course, this method also yields low order (with respect to m) expressions of the
functions /-, related to the case of a straight extension. It was remarked by Sunmu (1991)
that the sceond order formula obtained in that way tor £, does not agree with the exact
result derived by Wu (1979) and confirmed by Amestoy and Leblond (1985). In Sumi’s
terms, o.Lsome second order terms of the perturbation solution are simply very good
approximations of the exact asymptotic behaviour given by Wu (1979) and Amestoy and
Leblond (1985). The slight difference of the representations may arise from the fact that
the stress singularities at the branched corner are disregarded in the perturbation analysis™.
In more precise terms, the procedure involves i shift in the cut of the complex potentials

Fictitious straight crack

Real crack

Fig. 4. The real and fictitious cracks in the Banichuk Corterell Rice procedure.
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from the original crack to the fictitious straight one: the latter crack being for instance
supposed to lie above the real one as on Fig. 4, this means that the original values of the
potentials in the region comprised between the cracks are eliminated and replaced by values
obtained by analytic continuation from the lower half-plane through the original crack.
The problem is that such an analytic continuation is not possible. Indeed if the domain of
definition of the complex potentials could be extended beyond the angular point Z,, they
would be regular at that point, i.e. admit a representation as a power series of Z—2Z,
for small values of this variable, in contradiction with Williams™ (1952) results on stress
singularities at the apex of corners and notches. Because of that fundamental drawback,
the entire Banichuk—Cotterell-Rice procedure becomes illicit if the crack contains an angu-
lar point, or more generally any geometric singularity generating a non-¢* stress field, such
as a point of discontinuous curvature for instance. Even though, as will be seen, many of
the results obtained by this procedure turn out to be correct, they cannot be accepted as
such without another, rigorous analysis,

Part A of this paper is devoted to the calculation of the F,;s and G,s through the
consideration of the particular case sketched in Fig. 2. Though a notable part of the material
here is not new, this presentation is deemed necessary because the more original Part B
makes an essential use of the method and results expounded. The integral equation govern-
ing the complex potentials is first derived in the case of an extension of finite length, using
conformal mapping. Then integral equations allowing for the calculation of the F,,s and
G,s arc obtained by letting the length of the extension tend toward zero through suitable
changes of variables and functions, which establishes the desired connection between the
cases of a finite extension and of an infinitesimal one for the first time. Solutions of these
integral equations in the form of serics and accurate, high order expansions of the £,,s and
G,s are finally provided.

The particular case of Fig. 3 is studied in Part B in order to derive the values of the
H,s, K,s and M5, Since in the expressions (4) and (5) of k},"z’ and k", these functions
appear in terms which are finear with respect to the curvature parameters ¢* and C*, they
can be caleulated exaetly by using a first order perturbative procedure with respect to these
parameters, Following the method sketched in Leblond and Amestoy (1989), the fictitious
reference crack is taken to consist of two straight branches, the secondary one extending
between the angular point and the tip of the original curved extension (see Fig. 3). There
are two essential advantages in this approach with respect to the classical Banichuk-
Cotterell -Rice procedure : first, analytic continuation of the potentials from the lower half-
plane becomes possible since the angular, singular point is not crossed in the process;
sccond, the treatment is not perturbative with respect to the kink angle o so that the latter
can take arbitrary values instead of being restricted to small ones. Once the reduction to a
kinked-but-not-curved crack problem is achicved, the solution is obtained by the same
techniques as in Part A : conformal mapping, integral equations and solutions in the form
of series. Values of the H,,.5, K,s and M,,s are finally calculated through numerical evalu-
ation of these series,

In conclusion, the expansion of the stress intensity factors in powers of the crack
extension length studied in Part I and here is combined with Goldstein and Salganik's
(1973) principle of local symmetry in order to derive the expressions of the geometric
quantities (kink angle, curvature parameters) characterizing future propagation of the
crack ; in particular, a general equation is given for the curvature of the crack in its regular
(€™) part. A strategy for numerical predictions of crack paths based on these results is
finally discussed.

PART A: THE CASE OF A STRAIGHT EXTENSION

A.l. Presentation of the problem and reduction to an integral equation

We consider the problem depicted on Fig. 2. Use is made of the complex variable
Z = X, +iX,. The X,-axis is taken to be collinear to the main crack branch. The tips of
the crack are located at Z, = se"™ and Z, = ~2/ (2/ = length of the main branch) and
the angular points at Z; = 0 and Z; = 0. The stress tensor at infinity is denoted ¢®.

SAS 29:4-E
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The problem consists of finding Muskhelishvili’s potentials ® and ¥, which are analytic
everywhere except on the crack and subject to the following conditions:

O(Z)+ ZV(Z)+W¥(Z) = Cst on the crack ; (8)
O(Zy=TZ+0(1l): Y(Z)=T["Z+0(1) atinfinity. 9

where [ and [ are given in terms of the stress tensor at infinity by
[=i(eti+on); I'=Hoh—of)+ioh. (10)

The exterior of the crack Z,Z,Z,Z,Z, can be mapped onto the exterior Q~ of the
unit circle % in a new z-plane (Fig. 5), by defining [see for instance Dudukalenko and
Romalis (1973)]:

Z = w(z) = Re™ C—ef)z—e) (f:if) . (an

where R and o arc constants connected to the lengths 27 and s of the crack branches and
the kink angle nm by the relations

Fig. 5. The z-plane.
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L~m _ L+m
=2R (cos a:—ﬂ) (cos i;ﬁ) ; (12)
[+m I-m
s=4R (sin i—:—-—ﬁ> (sm E——'fz) ; (13)
sin § = msina. (14)

The determination of the function ((z—e~)/(z—€"*))™ to be used in eqn (11) is such that
the cut be located along any line connecting the points € and ¢~ within the interior Q*
of the unit circle, and that its limit for = — co be equal to unity. The images of the crack
tips in the z-plane are z, = ¢” and z, = —e ™%, and those of the corner points, 2, = ¢™"
and =, = ¢ (see Fig. 5).

Equations (8), (9) read. for the potentials ¢(z) = ®(Z) and () = ¥(Z) in the new
plane:

o(z )+:(~(_))(p( )+ ¥(z) = Cst for -e¥; (15)
o(z) =TRe™=+0(1): () ="Re™z+0(1) atinfinity. (16)

The quantity m(z)/w’(z) is readily shown to be equal to —e*™"Q(z) for €% and to — Q(z)
for ze# —%, where € is the arc =, 2.2, (see Fig. 5) and Q(z) is defined by

00) = an
This can be written
CE) 14 (= E)10), (18)
w'(2)
where [ is the characteristic function of the arc ¢':
I)=1 if :zew, 0 if zew-%. (19)
It follows that egn (15) reads
P(2) =00 D)+ (1 =™V ()0()e ) +¢(z) = Cst for ze. (20)

The resolution of eqns (16), (20) will require the knowledge of the behaviour of the
potentials in the vicinity of the points e, ¢ =, ¢” and —e ~*. Let us consider the points ¢
and —c¢ " first. Since 6,, + 0., = 4Re ®’(Z) and the stresses admit expansions in powers
of |Z—-2Z,| and |Z~Z,| with exponents ~1/2, 0, 1/2,... ncar Z, and Z,, ®(Z) admits
expansions in powers of Z—2Z, and Z - Z, with exponents 0, 1/2, 1,... near these points.
Now it is clear from eqns (17), (18) that w’(c”) = w’(—e~*) = 0 and one can check that
w"(c®) # 0 and w"(~¢ %) #0; this implies that Z~Z, =0((z—=¢")?) and Z-Z, =
0((z+¢ "**)?). Thus ¢(z) admits cxpansions in powers of z—¢” and z+¢ % with exponents
0. 1, 2,..., which implics that ¢ is indefinitely differentiable at €® and —e~". Then
eqns (17), (20) show that, in contrast, ¥ has simple poles at these points.

Let us now consider the points e*". Williams™ (1952) results imply that the stresses
arc 0(|Z—2Z,|"") and 0(J]Z—Z;|*") near the angular points Z, and Z;, where the ex-
ponents ¢; and ¢, are greater than —1/2. Thus ®(Z)~-d(Z;) and (Z)—-D(Z,) are
0(Z-2Z,)**")and 0((Z—Z,)*"), the exponents ¢, + | and ¢; + | being greater than 1/2,
and a fortiori positive. Since by eqn (11), Z—~Z, =0((z—e ™)) and Z-2Z, =
0((=—€"")") where ¢} and ¢} are positive constants, ¢(z) — (e ") and @(z) — @(e*) are also
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O((z—e ™)) anc? O({z —e™)™) with positive exponents ¢} and 3. 1t follows that the function
@ is Otz —e )Y and O({z—e™)" ') near ¢ and e° respectively, where the constants
¢y —Vand ¢ — 1 are greater than — 1 ; this implies in particular that it verifies the conditions

m (z—e*")p'(z) =0.

Such a function will be termed weakly singulur {at the points ¢ and ¢ ) in the sequel.
Equations (17). (20) imply that ¢’ is also weakly singulur at these points.

The reduction of eqns {16), {20) to an integral equation is based on the following
lemma. the {elementary) proof of which is given in Appendix A:

Lemma. Let f and g be complex functions defined and continuous on Q- U #, analytic
on Q including at the point at infinity.¥ and such that

f(z) =g(z) for :ceu. 2

Then f and g are constant and conjugate to each other.

To put eqn (20) in the form (21), we define

(o) = e[ e dr

i L -

where the arc 47 is oriented from ¢ ™ to ¢, In the above integral, the pole ¢ of the function
@ (sce eqn (I7)), which hies on the integration path, is “slightly displaced™ toward Q| ic.
x(z) must in fact be understood as the imit, for & > 0, ¢ — 0, of the samc integral but with
¢® replaced by ¢ = ¢ ¥ this is not indicated explicitly in egqn (22) because the notation
would become too awkward. On the other hand, the points ¢ ' do not raise any convergenice
problems for the integral, since egn (17) and the condition of weak singularity of " imply
that the integrand vanishes at these points. Then, if x(z*) denotes the imit of x(1) for
teQb wzed, 1z )~z )isequal to (1 —¢™MQ(2)p (2) if 2% by Plemeli’s formula,
and to 0 if ze # —%. Thus the third term in the left-hand side of eqn (20} is equal to
x(z*y—xt="). Furthermore, if we define, following Muskhelishvili, the analytic function
xa(2) = x(1/3), the term x(z') in this expression can be replaced by x(1'z ) = 3.z ).
Finally (2} can also be replaced by Q,(z) in the second term of the left-hand side of egn
(20). This cquation then takes the form

) —y(z") = 0.(2) rp’(:)«;(,.'(: Y= Y(z)+ Cst for ze . (23)

Most of the hypotheses of the lemma stated above are verified in this equation. Indeed the
left-hand side and the conjugate of the right-hund side are analytic on Q . Morcover, let
us show that the left-hand side is finite on #. The only points which raise problems are ¢*2,
e® and —e~%. Because of the behaviour of ¢ at these points (see above), it will suflice to
prove that x(z) has finite limits for z = ¢*% or ¢” in Q . (¢ ™) is finite because the term
t—ct" in the denominator of the integrand in eqn (22) cancels out with that in the
numerator of Q(r) (see eqn (17)), so that the weakly singular behaviour of ¢’(¢) near e*"
ensures the convergence of the integral. To show that ¥(z) is finite for - — e’ in Q~, write
the integrand in eqn (22) in the form f(1)/((1 —€" ){(1—z)) where f is € on % and split
the integral into two parts:

‘[Q(t)md:= f SO=LEN 4 e, j il
“ )

t—:z « (1= (t—: o (t~e® ) (1—2)

+ 1t is recalied that a holomorphic function is said to be analytic at infinity if it has a finite hmit for 2 — .
It then admits a representation as a power serics of the variable 172 for sufficiently large values of =,
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The first integral in the right-hand side has a finite limit for - — ¢ in Q~ since the function
(f()—=f(€*#))/(t—e*) is differentiable on € [see Muskhelishvili (1953)], and so has the
second one since the integration path can be displaced toward Q- without crossing the
poles €/ and = (€ Q7). Thus the left-hand side of eqn (23) is finite on %, and likewise for
the right-hand side since they are equal on #. Both of them are, therefore, continuous on
Q u¥.

There remains the condition of analycity at infinity. This condition is not fulfilled
because of the behaviour of the potentials at infinity (eqns (16)). More precisely, eqns (16,)
and (22) imply that

() —x(z) = TRe™z+0(1) for z—cc.
Moreover, calculation of Q.(z) yields

H(z—e*)(z—e™ ™)
(z—e®)z+e )’

Qu(2) = — (29

which implies, together with eqn (16.), that

QP ) =1 =¥ () = —(C+TIRe™z4+0(1) for z- oo,

Therefore, it we add —7'l:I§_‘~ifA’"~+(I‘+F YR ¢ "™ /= to the left-hand side of eqn (23) and

—[Re ™z + (F+)Re™: to the right-hand side (those expressions are equal for
z€ #). this equation becomes

P(2)—x(z V) =TRe™z+(C+T)Re ™=
= Qa0 (D) = Lulz ) =yY(z) =TRe ™z (T+)R™=+Cst for ze# (25)
and now both the left-hand side and the conjugate of the right-hand side are analytic at
infinity.
Applying the lemma and using eqn (17), we get

(r+i‘“‘)Rc“’"’=+; ™ [ (1= (t—e ™)@ (1) dt

o{zy = TRz~ 5 - + Cst;
z AT e t(t—e? Yt +e ) (1-2)
upon differentiation this yields
') =" () +L¢'(2) (26)
where the function ¢ and the operator % are defined by
_ F+T)Re ™
9%(z) =TRe™+ S-——‘t----;)-z—-ﬁ-——; (27
| —g¥mn t—€*)(t—~e ) [0 di
2= f (—e)(t—e )T dr_ a8
A Jet(t—e? Y1 +e )1 —-2)?

for any analytic function /. Equation (26) is the integral equation obtained by Dudukalenko
and Romalis (1973), Hussain et al. (1974) and Chatterjee (1975). The lemma also yields an
expression of ¢ in terms of ¢, which is not needed here.

Once the function ¢” is known through the resolution of eqn (26), the SIFs &, (s), k1(s)
at the tip of the crack extension can be obtained by using Andersson’s (1969) formula:

ki(s) =ik (s) = 2/n@ (€)= @ ()] 2, 29)
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where ¢ is the angle between the X-axis and the tangent to the crack at its tip, which is
equal to nm in the present case. The determination of the square root to be used in eqn
(29) is easily found by considering the special case of a straight crack (m = 0).

Equation (26) was solved numerically by Chatterjee (1975) through discretization of
the integration path and transformation into a system of linear equations. [t was also shown
by Amestoy (1987) that the solution can be expressed under the form of a series. The results
obtained for the stress intensity factors will not be repeated here since our prime interest
does not focus on the case of an extension of finite length as considered in this section. but
on that of an infinitesimal extension.

A.2. Expansion in powers of the crack extension length
The asymptotic expressions. for s — 0. of the constants R. x. § defined by eqns (12).
(13). (14) are easily found to be

/

= +0(s): (30)

_\/"2 lemYrt . N
*TN—mty iEm) VIO oo
f = mx+0(s*%). (32)

Equation (31) implics that % = 0(\,/5'}. Therefore an expansion in powers of s is equivalent
to an expansion in powers of a. Such an expansion will be achieved through the following
changes of variable and function:

z=eNy @) = ¢ N PUE) VO 02t (33)
The change of variable delined by egn (33)) maps the domain of definition Q  of the

complex potentials in the z-pliane onto the domain Im { < 0, —nrja < Re{ € n/x in the {-
plane, which becomues identical to the entire fower half-plance IT 7 in the limit « — 0 (Fig. 6).

The imagesof thepoints 2, =¢ "z =¢* 2y =¢”and 2, = —¢ Yare {, = —1,
t n i n+f
{y= i— =m+0u), (=1 and {4 = [ = O(I/\/ ) or - a‘{ = 0(~ l,'V/j.s')

depending on the sign of m. It is thus clear that the effect of this change of variable is to
“scale up™ the vicinity of the arc € corresponding to the crack extension in the z-plane, as
desired for an asymptotic study of infinitesimal extensions.

Since the derivative of the function involved in the change of variable (33,) is non-
zero, the behaviour of the function ¢ at the points ¢ and ¢* is preserved in the trans-
formation, which means that the functions U and V are indefinitely differentiable at the
point m and weakly singular at the points £ 1.

Inserting eqns (30), (32) and (33) into eqns (26)-(28), putting ¢ = ¢ and expanding
in powers of x, one obtains after a tedious but straightforward calculation

-(Q +aV () = [; —ix 2— {{+m)
{ - -

T—e2 (1 2o DD/ +aV(D1dA
* Ji, (A—m)(A—-0)* 060,

where m~ = m—ig, £ > 0, £ - 0. (Note that the weakly singutar behaviour of U and V' at

+ The reason for the intreduction of the scemingly unnecessary term ¢ ™ in egn (33:) will be explained

below.
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Fig. 6. The {-planc.

+ | ensures the convergence of the integral.) Introducing then, following Muskhelishvili,
the analytic functions 0(0) = U(0) and P({) = V({), replacing U(4) and V' (4) by U(4) and
V(4) on the real interval ] — 1, + 1, deforming the integration path away from the pole m~
onto the semi-circle (denoted C*) |A| = I, Im 4 > 0, oricnted from — 1 to + I, and identi-
fying terms of order a® = | and a' = a, we get

UQ =UQ+5UQ);: V) =VUO+aV (), (34)

where the functions U? and ¥ and the operator o are defined by
r ir
U°(C)=(F+7)\/E; V”(C)=—T(C+m);

(35

| —eglim= A—-Df)di
o) = = L( ) (2)

4in e (A=m)(A=0)*"

for any analytic function f. U° can be put in a more interesting form by noting that
Fr+r')2 =45 —ich) = (k, —ik:)/(Z\/r‘tZ) where k, and k, are the SIFs at the tip of the
original crack of length 2¢:

k,—ik

U = ——=. (36)
2 /n

Also, Re I'" = (62 —a7)) = — T/2 where T is the non-singular stress at the original crack
tip, and Im [ = ¢} ; therefore V' can be written as
0 'T

Vo) = (— 24 '7) (C+m). (37

Equation (34,) is Wu's integral equation for an infinitesimal extension (Wu, 1978a, b),
obtained here from that for a finite extension for the first time. On the other hand, to the
best knowledge of the authors, eqn (34;) is new.
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The expression of the SIFs in terms of the functions U and F is obtained by expanding
Andersson’s equation (29) in powers of x. Calculation of w”(¢") to the first order yields
first

. L4+mY” ,
w'ety = £ ™ (I—:?;D (I =2ima)+0(x"); (38)

insertion of this expression and eqns (31)-(33) into eqn (29) gives

o 1 —m\™*
k¥ kX = 2. —ntx m..».“,) . R )
g L e (l-%-m, Uy : (39)
2 : 3— - | ~mY"
/\’”"—-'k(wl ":2\/~._§_,; —imz [ 200
v P ey AR (40)

where the k¥s and &4' *'s are defined by eqn (2).

Equations (34)-(37). (39) and (40) show that the &*s and &!'"¥'s can be determined
quitc independently @ the A*s depend only on the function U which can be found from egns
(34,), (35 and (36) where the function 1 does not appear: similarly, the &4 s depend
only on I and eqns (34,), (35,) and (37) for this function do not involve U, This remarkable
property can be evidenced only by introducing the scemingly unnecessary terme '™ in the
change of function (33,) ; omitting it would result in the introduction of a term proportional
to U in the expression (37) of ¥ and of another analogous term in cqn {(40) for the k}," 3,
so that the independence property would not appear clearly,

Since the function U depends on the three components of the stress teasor at infinity
only through rwo parameters, namely the SIEFs at the initial crack tip, the same is true of
U and the A}s (this property does not hold for the SIFs &, (s} at the tip of an extension of
finite length, which are casily scen from eqns (26) (29) to depend on all three components
of o). This is an tllustration of the universality result (3). On the other hand, since V°
includes terms proportional to T and o {5, the same is true of I, and it seems therefore that
the &' ?'s should not be simply proportional to 7 as predicted by eqn (4) (with ¢* = 0). In
fuct the contradiction is only apparent ; indeced it can be shown (see Appendix B) that that
pirt of ¥ which arises from the o7, term in egn (37) (i.e. the function V' corresponding to
a zero T) admits the following expression :

PN (S | G
["’f:}}r=o=%('n“s)(,+x) Cer™), 41)
=

where the determination of the function ((§+ 1)/(J—1))" is such that the cut be located
along any arc connecting the points £ 1 in the upper half-planc T1* and that its limit for
{ — % be equal to unity. Equation (41) implics that [F({)] . o Is zero at the point J = m.
so that af> docs not generate any contribution in the expression (40) of the &' s, in
agreement with eqn (4). This feature represents a good check on the correctness of the
approach used.

It is remarkable that such a simple, explicit solution can be found to a complicated
integral cquation. Howcever, the authors have failed to discover similar explicit expresstons
for the function U/ and that part of I~ which is proportional to 7°; this is unfortunate since
it is these potentials that lead to the determination of the functions F,, and G, which are
sought. The best the authors have achieved concerning the analytic expression of these
functions is to have obtained formulac that allow for the determination of their exact
expansion up to an arbitrary order in m (sec below).
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A.3. Solutions under the form of series and high order expansions of the function F,, and G,

In the right-hand side of eqn (35,) defining .o/, the only values of f involved are those
on the conjugate C~ of the arc C* (see Fig. 6). o can therefore be viewed as acting on the
space of functions f defined and continuous on C . Furthermore, let £ denote the subspace
of functions (defined and continuous on C ) verifying the condition that the quantity

i = Ma’1( -DfOl 42

be finite. The functions U and V¥ do lie in this space because of the condition of weak
singularity at + 1. We shall show that if £ is endowed with the norm || | defined by eqn
(42). of is a contractant operator on this space, i.e. there exists a constant ¢ smaller than |
such that

I/l <elfl, 43

forevery fin §.
To prove (43), let us note that

smimn] N dJi
[-/fl < s Max{!i l!j T=milie §¥}

Putting then { = ¢7 (=1 <y < 0), 4 = €” (0 < 0 < ), and noting that |A—m| = 1 ={m],
we get

" f [d4] < 2siny [* do o2
o ;1-—»:”)-g{ t—lm}jo ﬁ(()...y>~ I —|m|’
4sin*

It follows that [/ ] verifies an inequality of the form (43), with

__ sin |mm|
T r(l—|m))’

This quantity is smaller than 1 for —1 < m < + 1, which concludes the proof.

It follows immediately from the contractant nature of & that the solutions of the
integral equations (34) are given by U = ZLJ2, &"U° and V = X}2, " V°, where the
series of functions converge in the sense defined by the norm | || introduced above. This
implies that for every {e C ™,

UQ = T S UQ; VO = ZQ 2V, (44)

LR

the convergence of the numerical series being uniform on every subset of C ™ not containing
the points + 1 in its closure. Once these equations have provided the values of U and ¥ on
C ~, these functions can be calculated on their whole domain of definition I~ (or even, by
extension, on the entire complex plane except on C*) by re-applying egqns (34), now with
{ell” (or C-C™).

Equations (44) can be used to numerically compute the functions F,, and G, [see
Amestoy (1987)]. The results obtained for the F, s are in complete agreement with those
of Wu (1978b) and Bilby et al. (1975, 1977). Concerning the G,s, they confirm the only
information available in the literature concerning numerical values of these functions,
namely Bilby and Cardew’s (1975) finding that the zero of G, occurs close to 98°. All these
results will not be repeated here because, as will now be seen, eqns (44) can be used to
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derive more convenient, and considerably more accurate, high order expansions of the F, s

and Gs.

Indeed, it is shown in Appendix C that eqn (44,) yields the following expression of

—1k?* (from which the F, s readily follow):

l*"’ m 2 o
k,‘—ikfz( ’") T .

l+m g

where

) sin mre \" o

(k,—ik,) (_wm_) e x, ifniseven
- 2n

u, =

sinmn V'

~(k‘+ik;)( 5

the x,s in these expressions are given by

o t -1
— {m in) o ] y - R
w= Y L dn dm"[ ( 2in 8 mt l)]

pemligw@

where log

) X ifnisodd;

(435)

(46)

(47

is the logarithm function defined on C—iR* by log ™ (p¢”) = In p+if) with

=312 <0 <2 and the ¢V's and PI"(X)s coctlicients and polynomials verifying the

[
following induction formulac:

[):lm(‘v)

-

(B, = ¢th Bernoulli number};

“'uu) =;
. 1)"2in Ty 2m(p = 1) g m?—1 P
u:u()z—c} ( _.l) Pt~ I) p u[‘)—l(}—l*““
for 2<pg2n 1 <qg€n;
dap =245 for 0<q<n;
—~ 1" 2in
8”-—-( )’ an z(,".,,l'i for 1€g<n;
q
(i ORI &g :(-l)” ’ p-Zm d'—l’ P
tyo =;[I,, l0+ Z zo p(é’f“l) Cr-‘ a, .2 dm’ " (m - ) s+ 1
I-ﬂ,(-
for 2<p<2n;
(n) ns; ¢ ‘Pf'"‘)'l(o)"m
afy = (= 2in 3 Tt
r= 0

=X PO = (=17 Y B, PYNX) (nz]

(48)

(49)

(50)

II ‘m-—l>
T 2in % m+1

(where the coefficients a%~ " are to be considered as nil if p > 2n—20rg > n—1).

G, —iG, is also given by similar formulae:
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T l-m\" %
—iG. =i = e 55
G116 ‘Vz(l—ml)(um) P e

(sm mn>
(Sm mn) Y if nisodd;

-1
n —_ — .
i ( 2m o l):l S

BPg=1; b5 =2m: (58)

"y, ifniseven
(56)

2

n= 3 S

p=0g=0

p— lg- l

—1)"i
bﬁ,’;’.—.(——;—ﬂ[(p—l)b}fq‘_'.‘+ (’; D ge=m 5 b;,"_ 20~ |] ~pr-n

for 2<psI<qg<n; (59)
by =205 for 0<q<n; (60)
a1
bﬂf.}—g‘);—ﬂ[h&; L+ 2mb™ V142670 for 1< g<n; 61)
- I4
h(")u"g“‘z““““lﬁh |‘, | for lqun. (62)

q

PLI IR Y S )n |2l7[ d,_,,

1 m—1
[ Ry Xy §] p - 2TV —-npn log ,,__“)
bri b “’+,§p ,;0 pls+1) -3 dm -7 [(m VB ( e 8 Fi ]

for 2<p<2n; (63)

n- IP(n) 0
boh = (= 1)"2in 3, ;”( ) 2mBE T 42 Y PO 6T (64

y=0 ¢ 1= |

"< P 0) ey
*+' PG (65)

b(")l 0o=(— l)"4 Z

r=0

(with %" =0if p>2n—20r ¢ > n-1).

Since by eqns (46) and (56), u, and v, are 0(m”), the expansion of the F,,s and G,s up
to any order n can be obtained by retaining only the first n+ | terms of the series (45) and
(55) and treating all functions of m in eqns (45)-(65) as polynomials of suitable degree.
This has been donc analytically up to order six for the F,,s and three for the G,s, and
numerically up to order 20 for all functions. In the latter computation, the coefficients
of the expansions have been derived under a purely numerical form, despite the fact that
they are in reality polynomial expressions of z with rational coefficients (except for an
additional multiplicative \/172 factor in the case of the G,s). The results are as follows:

3t L, (., st , (=¥ la* ll9n°) . ]
Fy\(m) = l——8—m + <7I —m)m +<3_?+1—53€6 m®+5.07790m

—2.88312m'% —0.0925m'2+2.996m'* —4.059m "¢ + 1.63m"'® +4.1m*° + 0(m*?) ;

3n 0r =’ 1332 S9n
Fv = - - 3 _2 -
12(m) 5 m+ ( 3 + l6)m + ( = %0 + 1780)m +12.313906m’

—7.32433m° + 1.5793m "' +4.0216m'* ~6.915m'* +4.21m"" +4.56m'° +0(m*") ;
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F (m)—'-:m-—(/ff-f-n—})m”‘( o %) 6.176023m’
sl =sm=7 g 3 730 T 3gap)™ O 1760=3m

+444112m° ~ 1.5340m" " —2.0700m'* +4.684m'° —3.95m'" — 1.32m" +0(m""):

3T\, 297°  5¢
F;:(m)=l~<4+ r)”l‘+<§+ on n)m‘

8 37718 128

+< 32 4t 11597 119#®
579 " 700 T 13360

)m" +10.58254m®% —4.78511m "’

—~ 1.8804m '  +7.280m ' ~7.591m' +0.25m'  + 12.5m" +0(m>7) ;. (66)
G (m) = (27)' “m” —47.933390m* + 63.665987m® — 50.70880m® + 26.66807m ' °
—6.0205m'* —7.314m"* +10.947m'® —2.85m"® — 13.7m*° +0(m**) :

Gilm) = =2 2nm+12/2nm* —59.565733m" + 61.17444dm’ — 39.90249m°
+15.6222m" +3.0343m" " — 12.781m"* +9.69m" 7 +6.62m'* +0(m*").  (67)

The coetlicients have in fact been calculated much more accurately than these equations
seem to indicate : many significant digits have been omitted here because the resulting error
in the value of the function expressed is smaller than that arising from the discarded (0(m')
or 0(m*7)) term. Sinee the coctlicients of the last few terms appear to be < 10, these formulac
can be estimated to provide valucs of the F,,s and G,s with an accuracy better than 10 °
in the interval [0 . 80 | of practical interest (80 being about the maximum observable kink
angle) : this s much smaller than the errors which result from the use of conventional
numerical tables.

As far as the second order expression of the £, 1s concerned, the present results agree
with those derived by Wu (1979). On the other hand, the expression of Fy, is in conflict
with that obtained by Sumu (1991) using the Banichuk Cotterell -Rice perturbative
procedure, which reads

Tr?

Fyp(m)y=1— 3

m +0(m*).t

As noted by Sumi himself and detailed in the Introduction, this discrepancy stems from the
busic inadequacy of the Banichuk-Cotterell-Rice procedure for dealing with non-¢*
cracks. Karihaloo er al. (1981) and Sumi (1991) also derived second order expressions for
the G,s which agree with eqns (67).

A4, Application to the problem of the conjectural coincidence of the maximum-energy-
release-rate criterion and the principle of local symmetry

Asaninteresting application, we shall now consider the problem of the possible identity
of two classical criteria for predicting the kink angle, namely the maximum-energy-release-
rate criterion (Erdogan and Sih, 1963) and the principle of local symmetry (Goldstein and
Salganik, 1974). Among the various criteria that have been proposed, those two have always
aroused particular interest ; especially intriguing is the almost perfect coincidence of their
predictions which has been evidenced by numerical calculations of the functions £, . in
terms of which they are expressed [sce for instance Bilby and Cardew (1975)]. In fact, the
difference is so tiny that it falls within the numerical errors ; thus deciding whether it is real
or not can only be achieved by analytical means. The expansions derived in the preceding
section will now be seen to provide one way of settling the question.

+In order to avoid any ambiguity, erroncous results (or at least deemed so by the present authors!) arc
indicated in bold.
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The energy-release-rate for non-collinear crack growth is given by the following exten-
sion of the classical Irwin formula:

[—v?

g_E

(k13 +k2),

where E and v are Young's modulus and Poisson’s ratio (Ichikawa and Tanaka, 1982).1 It
follows that the kink angle predicted by the maximum-energy-release-rate criterion is such
that

ok okt
L p k= 0.
ko +kiz =0

On the other hand, the principle of local symmetry stipulates that the second stress intensity
factor must be zero just after the kink, which reads

> okt ck¥
.. w1 * 02
ki=0=ki om < oM 0

and consequently, since AT and k¥ can easily (for instance numerically) be verified not to
vanish simultancously, that

In terms of the functions F,,, this reads
Fai(m)k, + Fas(mky = 0= Fi, (mk, + Fia(mky = 0.

Writing these equations in the form Fy (m)/Fy(m) = —kyjk; Fy(m)]Fi(m) = ~k.Jk,,
one sees that for their solutions (in m) to be identical for all values of k,/k,, the functions
on the lefi-hand sides must be equal ; equivalently, the equation

Fiu(m) 2 Fia(m)

Fy(m) ~ Fay(m)

must hold for all values of m. Now eqns (66) imply that

F’ 3 3 4 3 b
um - 3n (47:... ?’l‘_>m2+ (107:-- LI )m‘+0(m"):

Faim) - 2 8 7

t2(m) 3n ( 3n’) ( 23z #°
—— = T 47t = e 2 —— 4 6
Fanl) 2 + {4n 3 m*+ | 10z B +32 m* 4 0(m®).

These expressions show that the above identity does not hold and therefore that the two
criteria are definitely distinct. The difference only appears when the expansion of the F,s

1 This formula is classically established for a straight (deviated) extension of a siraight crack. However it is
casily verified to be also applicable if the crack and its extension are curved.
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is carried out up to order six, that is four orders higher than in the most accurate expansion
presently available in the literature (Wu, 1979).

PART B: THE CASE OF A CURVED EXTENSION

B.1. New expression of the stress intensity factors

We now consider the problem defined in Fig. 3, which will be solved by a first order
perturbative procedure with respect to the curvature parameters a* and C*, as sketched in
the Introduction. We denote by § and nsit the length of the fictitious straight extension and
the angle it makes with the X,-axis. Using eqn (1). one easily shows that § and st are
related to the length s of the curved extension and the angle nm between the X -axis and
its tangent at the angular point (see Fig. 3) by the relations

’ . ’
§=854+0(s7): m=m+ A + ~.)—n£ +0(s¥?). (68)

The perturbative procedure will yield an expression for the SIFs which will appear as the
sum of that for a straight extension of length § in the direction nst and some corrective
terms due to curvature. This expression will not be directly comparable to eqns (2)-(5)
which define the functions H,,. K, and M, which are sought, since the extension length
and kink angle involved in these equations are s and mm instead of § and . It is thercfore

(m)k, +[G,(m)T+a*H,, (m)k,] \/3'
+ [Z,,(IN) + Ip,l("l)hq + C‘Il"l('")kq + a* K',,("l) T+ C‘*A’pq('")kq]-\' + 0(.\‘"/:)

k,(s) = F,

i

» .
= [, (m)k,+ l:G,,(n"x) T+a*H, (m)k, — (; [",',‘,(lﬁ)k‘,} \/.s’-i» [:Z,,(n'z) +1,, ()b,

* -

C i)
+CJ,, ik, +a*K,() T+ C*M,, ()k,, — 2 F, (nk, — ‘; G (1) T] F+0(5YY

ra

(where second order terms with respect to ¢* and C* have been disregarded). This expression
is of the form

ko(5) = ey (DI o = o+ a*HLoy i)k, /5 + [a* R () T+ C* M, i)k, )5 +0(5"), (69)

where [k,()]37. ¢+ - o denotes the pth SIF at the tip of a straight extension of length § in
the direction nsi, and the H,,s, K,s and M,,s functions defined by

_ F .
Hy = H,— w":ia H,, = H,+ ';:'q“; (70)
- G; - G;
=Rp—— =K+ —; 71
K, =K, - =K, =K,+ — (71)
- F . F
A’[P'I = A{P'l._ —2—;il'¢>MN = Mpq+ i’;: . (‘72)

The expression (69) of the SIFs, which is exact to the first order with respect to a* and C*,
is precisely of the form which will result from the perturbative procedure. It will therefore
be easy to identify the functions #,,, K,, M,, and the H,,s, K,s, M s will follow from eqns
(70,), (71,) and (72,).
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B.2. Reduction of the problem to integral equations

The equations of the problem in the physical Z-plane take the same form as in the case
of a straight extension (eqns (8) and (9)), ® and ¥ denoting the real potentials, which are
discontinuous across the real, curved extension.

We associate with @ and ¥ some new potentials ®* and ¥ by shifting the cut, through
analytic continuation, from the curved extension to the fictitious straight one. hereafter
simply denoted Z,Z,Z,. Furthermore, Z being an arbitrary point on Z,Z,Z,. we denote
by n(Z) the gap between the two extensions, and we expand ®* and ¥* in powers of n:

O =Gy +0,+0(7%); W =Wo+¥, +0(nY). 73
IfZison Z,2,Z,. Z+n(Z) is on the real extension, and ®[Z+n(2)] = ¥ (Z)+

Q(ZI(Z)+0(n°) = O, (Z) + D (Z) + Dy (Z)(Z) +0(n*) ; similar equations hold for
@ and \P. Thus the boundary condition on the deviated branch can be written as

Do(Z2) +D(Z2) + P (ZI(Z) +[Z+ (2N PH(Z2) + OU(Z) + Do(Z) 1(2))]
+¥(2)+ Y (Z)+V5(Z2)n(Z)+0(n*) = Cst for ZeZ,Z:Z,.

The same equation also holds for Ze Z,Z,Z,, putting n(2) = 0 in that case. Identifying
terms of order 4” = 1 and n' =5, we get the following boundary conditions for the
potentials @, W, &, ¥,
D(Z) +Z0(2)+Wo(Z) =Cst,,
®(Z)+ ZW\(Z)+ ¥ (Z) + [OW(Z) + DU DNn(Z) +[203(2) + ¥o(D)In(Z) = Cst
for ZeZ;Z;Z;ZQZ‘. (74)

The conditions at infinity are also casily obtained by expanding eqns (9) (for @ and
) in powers of 5 since T and I are independent of n, one gets

Dy(Z) =TZ+0(1); Wo(Z)=T'Z+0(1); ®(Z)=0(1); ¥, (Z)=0(1) atinfinity.
(73)

Equations (75,) and (75,) mean that in contrast to ®, and ¥, ®, and ¥, are analytic at
infinity.

We now introduce the same conformal mapping as in Part A (eqns (11)-(14)), except
for the replacement of s and m by § and #1. In the new z-plane, the equations for the
potentials @y (2) = ®y(Z), Y4(z) = Wo(2) are the same as in the case of a straight extension
(eqns (15) and (16)) (except for the replacement of m, ¢ and y by #t, @, and ,), and those
for the potentials ¢, (2) = ®(Z), ¥ (2) = ¥ (Z) read

{2+ === 1z e - .
? () w,(:)<p1()+«ll()+ w0 Vo5

L) T [_(f_,_,_(_;l %(z)]n )

+ [w(_z,)_(’ii’fz) - w(:)w_(‘?f’ o) | $o(2) JE"’)‘ =Cst for ze%: (76)
w'(z)* w'(z w'(z)

@(2) =0(1); ¢,(z) =0(1) atinfinity. n

With regard to the zeroth order potentials, the method of solution is identical to that
described in Part A and leads to the same integral equation (26) for ¢} (except for the usual
replacements). The expression of ¥, will also be needed here ; it is obtained by applying the
lemma of Part A to the right-hand side of eqn (25)
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Yo(2) = (I +T)R eim:"rRev"ﬁ:‘f'l’*‘Q*(:)@;}(Z?-Xc*(:)-%-CS{

(where ¥, is defined in terms of ¢ by eqn (22) with m and ¢’ replaced by 7 and ¢)). To

get Youlz) = Yo(1.3), use eqn (22) and replace 1, df and Q(1) by 1'r, —dir" and Q,(1) in
the integral over %':

He‘“”"“f 20 (D@1 dt

Xoals) =~ =1

In the above integral the pole e of the function Q.(2) (see eqn (24)) must in fact be
understood as €”” = "+ ¢ > 0, & — 0. Inserting this result into the preceding expression
of ¥, and using eqn (24). one obtains

[Re " I e e }
: c—eP)z+e ) 0ols

| __e,zm[ s(t—e™)(t—e"N)py(0) dt
2 ke (t—e?Y(t4+e )z —1)

Yol = (T+TRe™z~

+

+Cst. (78)

Solving eqns (76) and (77) for the first order potentials will require to know their
behaviour near the points ¢4, ¢ and —c¢™%, and also that of the bracketed terms in
cqn (76) near ¢t and ¢’ The potentials ¢ and ¢ satisfy the propertics mentioned
in Section ALl for all valucs of 7, so that these propertics apply separately to the zeroth
and first order potentinls: therefore ¢, is indefinitely differentiable, and iy hus simple
poles, at * and —¢~"; ) and ', are weakly singular at ¢, The behaviour of the
expression [ g2y +. }q( ) in eqn (76) ncar ¢ is casily deduced from that of
P (2) (' () @ )+, (2) : using the propertics of ¢, ¢, just mentioned and egns
(17) and (18), onc concludes that imn’: quantities have simple poles at ¢*. As for the
behaviour of {... () +[. .. 17(z) near ¢***, the simplest reasoning consists in noting that
this expression arises from the analogous one [ .. I{(Z) +[.. . ]n(Z) in an (74). Since by
Witliams™ (1932) results, @4(2) and Wi(Z) arc O[{Z — Z) ] and O[{Z —~ 7Y} near 7, and
Z respectively, where the constants ¢; and ¢, are greater than —1/2, ‘md sinee (7)) has
simple zeros at these points (see Fig. 3). [...Jm(Z)+].. n(Zy is 02 = Z,17 Yy and
0 Z~Z;| "y where e+ and ¢y + 1 are greater than 1,2 and ¢ Jortiori po»stm, yAYA
and Z — / being 0{(z —¢ ")*1) and 0((z — “’)‘ ') with posum. exponents ¢; and ¢, it follows
that [... ]9y +1.. ]r](; is also O(L —e Yy and 0(|z — ™) near ¢ and ¢ respectively
Sfor some positive constants ¢} and ¢,

We now define a function 3, by eqn (22), with m and ¢ replaced by m and ¢, We
also introduce the function

{ @olt) M] {w(!)lp o) w(!)w (r) zp‘,(t} :,?[;,(})}.W} dr
= R TR I AL A b4 s 0Ny
1) ‘mzﬁ {[‘U (“') * @’'(1) ) w'{1)* o'’ @' (1) " -z

(79

The integrand here has a simple pole at e, which is slightly displaced toward Q™ : this
means that the integrand being put under the form f(1)/(1—¢*) where fis €™ on €, e is
replaced by ¢, On the other hand the integral is convergent at the end points e** since
the integrand vanishes there. Following then the same kind of reasoning as in Part A, based
on eqn (18) and Plemelj’s formula, we transform eqn (76) into

fPi(:)"‘Xl(—")"’(P?(Z’) = Q.(2) (p',(z)-—-x“(z“')~—t//,(:)~rp?*(:”)+CS1 for -e#.

It is now easy. following the same lines as in Part A. to show that the left-hand side
and the conjugate of the right-hand side are analytic on Q~ and continuous on Q" v #.
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Moreover, all functions in the left-hand side, and all conjugates of the functions in the
right-hand side. are analytic at infinity (for the term Q. (=)’ (2). this results from the fact
that Q.(2) is 0(z) at infinity by eqn (24), and that ¢'(z) is 0(1/=") by eqn (77,)). Applying
then the lemma of Part A and differentiating, we get the following integral equation for the
function ¢ :

@01(2) = oV () + £’ (2). (80)

where & is the integral operator defined by eqn (28) (with m replaced by rit). The expression
of ¢, can also be obtained but will not be needed.

The solution can therefore be obtained as follows : solve the integral equation (26) for
@, evaluate ¥, from eqn (78); calculate ¢ from eqn (79); solve the integral equation
(80) for ¢} finally get the SIFs from Andersson’s formula (29) with ¢’ replaced by

0" = 9o+ +0(7%).

B.3. Expansion up to order 1/2 with respect to the crack extension length

We shall now expand the preceding equations up to order \/:v‘, or equivalently up to
order «, as in Section A.2. This will yield the functions H,,. As remarked in the Introduction,
these functions will be calculated exact/y despite the fact that the method used is a first
order perturbative procedure with respect to the curvature parameters, since they appear,
in eqn (4), only in a term linear with respect to a*,

We introduce changes of variables and functions analogous to those defined by eqns
(33):

2= @) = e [ SOULO) + 2l Vo) + 0]
Yozl =¢ "C{\/van(f:)'**o(a)]i pi(c)=¢ "x"{\/’}Ux(s')+1/V:(§)+O(az)1« 81

The propertics of the new functions at the singular points are the same as those of the old
ones: Uy, Vo, Uy, Vy are indefinitely differentiuble. and X, has a doublet pole, at the point
m; all five functions are weakly singulur ar + 1.

Expansion of the integral equation (26) for @y up to order 2' = « leads to the integral
equations (34) of Section A.2, with U, V and m replaced by U,. V, and 1. The expressions
of Uj and X, will also be needed here. The first one is easily obtained by differentiating
egn (34,):

o | — g2 (A= DU,(4) dA
Vi@ = =5 L. Gome=o"

(82

The second one is derived by differentiating and expanding eqn (78):

. k|+ik1 C:—Z'ﬁC‘f[
Xol0) = s e Uy (§
olC 2\/7t 2C—m)? oD

Pl e Gy di
sc=m O~ 7 ﬁ G-

(83)

In this expression the integral, originally obtained in the form

J‘“ (A2 =1)Uy(4) di
-1 =)A=’

has been transformed by deforming the integration path ] — I, + 1[ away from the pole i*
onto the semi-ellipse [~ : A = cos 0+ (i/2) sin 8, —n < 0 < 0 (see Fig. 6). This is allowed

T Because it is connected with the derivative of .

SAS 29:4-F
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provided the point ¢ lies below '~ ; in practice only points belonging to the semi-circle C~
will be used.

We shall now expand the integral equation (80) for ¢} in powers of 2. The first task
1s to get the expansions of w(z). w'(2), w"(z). Using eqns (11), (30) and (33,) (with the
usual replacements), one obtains

c+1

) +0(xY): w'(2) = itx(S~-m) <Zi:)m +0(2%);

C+2m° =1 [T+ 1Y
T (;-—l) +0(x). (84)

w() = — Aw(; —l)(

The function (({+ 1)/({—1))" here has its cut along any arc connecting the points + 1 in
the upper half-plane IT*, and its limit for { — oo is unity.

Next one must derive the expression of the gap 5 between the two crack extensions.
Using eqn (1), the fact that |Z| = |w(z)| and eqns (31) and (84,). one gets

n= —ia*e™|Z) (i~ S1ZD)+0()

( 12 »\m
= —iu* <?~_> at e — l)( +Z) g(0) +0(a™), (85)

where g is the function defined on [ =1, + 1] by

90 = J1-¢ ('ff) - = (”"')nh. (86)

| —m

(80). Equation (79) yn.ldx afu.r a Icngthy but stralghlforward calculation :

arfa [ (‘.J—I)g(/) [ g™ 347 +6m)—-4m+l-—-
f. G=i (=07 | VP

o = ey Ual)

n\/"

Cllmn "_2_1 ; N . .
3 }':‘"}I—: Uo(/.)+X0(/.)] di+0(a).

Since this expression is 0(2). it does not yicld any contribution in the term of order zero of
the expansion of cqn (80). This equation yields therefore, to the lowest order, an integral
equation for U, analogous to eqns (34) for U, and V, but with a zero “second member™:
U\ () = o/ U,({), where .o is the operator defined by eqn (35;). Because of the contractant
nature of « (sce Section A.3), this implies that U, is zero. Since U, describes the (first
order) cffect of curvature in the limit x — 0 (see eqn (81,)) or equivalently s — 0, this
result means that the asymptotic solution for an infinitesimal extension is independent of
curvature, in agreement with the universality result (3).

Expanding eqn (80) up to order a' = « using the previous expression of ¢}’, one gets

Vi@ = Vi) +«/ Vi) (87)

where
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@ { J (47 = Dg(AUy(2) di j (2*—Dg(4)
) =—— TS + PN
4n 2 Lo (A—r1)(A—0) c (A—n1)(A—Y)
limn "2 ~"‘_4~: . 2irin "2_ — o .
x|:e_, WOt e O U;,(/.)+Xo(;.)] d/.}. (88)
2 (A—m)- 2 A—m

In the second integral Uy(4). Uy(4) and X,(4) have been replaced by the analytic functions
Uo(4). Up(4) and X,(4) and the integration path has been deformed away from the pole
i1~ onto the semi-circle C*. In the first integral it has been deformed onto the semi-ellipse
["~. This is allowed provided ( lies below I~ (and in particular for {e C~): indeed no pole
is then crossed in the process. the quantity g(1)/(4 — 1) being finite at 4 = ri1 (see eqn (86)).
The determination of the function g here is such that this function be analytic on the unit
disc and reduce to formula (86) on the real interval ] - 1. +1[.

The expansion of Andersson’s equation (29) is obtained following the same lines as in
Scction A.2: using eqn (38) (sn being replaced by #i1). paying attention to the fact that here
the angle o between the X, -axis and the tangent to the crack extension at its tip is not nm
but mn + ';a"\/s+0(x) = m?x+(a"‘/2)\/§+0(§). and identifying the terms proportional to
U, and ¥, but not to a* with [k,()]57. ¢« - o. one gets

. : L - -t i(l* l - ,;l . -
ki(s)—ik,(s) = [k| (N =tk (D o0+ \/Tf ¢ -5 r_:;;fl Uo(rit)

2 (1-mV Lo -
+2 \/ l—n'::(l-ﬁ;‘i) v,(m)]\/.v+0(-s’)- 89)

The quantity ¥, (ri7) here can be evaluated, once V), is known on ¢ through resolution of
the integral equation (87), by re-applying this cquation with { = #i. However, when cal-
culating the term V(1) in this equation, onc must pay attention to the fact that this
quantity is not given by eqn (88) with { = s, since this point lies above T~ (sce above).
Putting ¢ = st~ and evaluating the residue at 4 = 4t using eqn (86). one casily gets

10 (si1) Same expression asiny  iu* \/l‘-—jr'zh’ I+ \™? U, i 90
g } = —e LT Pt .
W = eqn @8 with¢ = ) " a N 2 D) Yel® (50)

U, is known to be proportional to the A,s (sce Section A.2): the same is true of X, by
eqn (83). Equations (87), (88) and (90) imply then that V{ and V,(s1) are proportional
to a* and the k,s5. The term \/n e (... ]\/.s’ in eqn (89) is thercfore also proportional to
these quantities. This equation agrees thus with the form predicted for &,(s) by eqn (69) up
to order \/.s" (i.c. basically with the universality result (4)) and allows for an easy evaluation
of the functions fl,,,,(n"x).

B.4. Expansion up to order one with respect to the crack extension length

The calculations necessary to obtain the expansion of the SIFs up to order 5, or
equivalently o, are quite analogous to those presented in the preceding section, though
notably heavier; only the basic equations and results will be given here.

Change of functions
Pu(2) = ¢ F[SOULQ) + 2 Vo(Q) + 230 Wo () +0(2)] :
Ya(z) = ¢ S[/CXo(D) + a7 Vo) +0(2))]
P \(2) = eV () + LW (O +0(2 ). 9n

Integral equation for W, : necessary to obtain the term proportional to 5 in the expression
of [£,(N]i¥'. ¢+ - 0. but not needed here.



488 M. Amestoy and J. B. LesLosp

Expressions of Viyand Y, -

[ — 3
{s -—m}(/ “-’g) (92)

a;‘:+§j+ h-e“"‘”f (+° «—mf,ma,

e o, AT\ . . -2+l ”wl i
Yol = ""(“ﬁ,‘”‘+?)(5+"’)““““(“"‘"“:‘”’v‘”;o(s) ,,(" m};u(s)

P—e 3 (G2 1)1y(A) di . e
il B ety SOEs {{below I'). (9%

Integral equation for W, :

Wi(Q) = W) + o/ W (), (94)
where
ey A" (A= Dg(A) V(i) di (z'——«i)g(z)
Wi) = ——= Y —
dr 2 U (A—m)(A-0) (/ -4 —)F
e 3 emA—dit . et i NP .
X [“2 (i—rm)? Vola) + ’“‘2'““ A—-—If! Vala)+ Yn("-}} d/}
. c* H (A1 = i)/l(/)U(,(/)d/ . (4% = Dh(d)
tor L G—m)A=0)° o (= A=0)*
2 i 'V +(m:/ -—4m + 1 VAR B . ,
X [: VE (/ ”m) . Ual) + 2 ; wfff U!l(;')'*"lyg)(/-)}d'{}

(¢ below ™ ). (95)

In this equation A is the function defined by

. 1 ¥\ s 1 ~ N\
fz<£>==<1-<:->< *‘:) ~—<:—»‘"r>( *-"f) . (96)
1 —{ L —m

Expression of the stress intensity fuctors:

., . {Same expression ] _ICH[(l=mY
;"(A)“A:(")”(asincqn(w)) Jre [ (1 a) Gotm)

s % o E 4 } —t Y2 .
- .,M-ffi.,-w l m) Vo) + o, ( ft‘) W ;(,,,)]A+0( &t . (97
\/7(i--m ) 11" \ | 441

W, (s71) being given by eqn (94) with

Same expression asiny  ia* \/T e (1 +,§),,-,,«z )
Ofmy o _ia* 141 y
Wien) (eqn (95), with{ =m ) 4 7 = o (1)

iC* L (1Y
---§~(l-nl )(f:;g) Uy(rit).  (98)

It can be verified that the term proportional to o7, in ¥V, (eqn (41), with [F({)]+. 0 and m
replaced by [Vo({)]+. o and 1) does not generate any contribution to the function W7, nor
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consequently to the function #°,. It follows that the expression ﬁ e "[...]5ineqn (97)
contains terms proportional to a* and T on the one hand, and to C* and the &,s on the
other hand. in agreement with eqn (69) (i.e. fundamentally with eqn (5), except for the term
a**L,,(m)k, disregarded in the first order perturbative analysis). Like the vanishing of
[V(D)]r-o at { = m (see Section A.2), this represents a good test of the correctness of the
approach employed.

B.S. Solutions under the form of series and numerical calculation of the functions H,,, K,
and “'{W

It would of course be desirable to express the functions ¥, and W, under the form of
series analogous to (44):

V=3 S0 W) = z;) SWUL) (Y {eCO). (99)
n=10 n=

Since the operator .o/ is contractant on the space & (see Section A.3), establishing these
formulae only requires to prove that V') and W1 lie in this space. Let us consider 9 for
instance (eqn (88)). In the integral over I' ™, let us deform the integration path onto C*.
(This is feasible since there is no pole at 4 = rit (see Section B.3) and U, can be extended
to the whole complex plane except on C* (see Section A.3); the value of U, to be used at
A€ C* in the integral is then the limit of Ug(u) for g — 4 from below.) Using the fact that
the term in factor of (4 —rit)(A—{)7) is bounded on C* in both integrals and incqualities
analogous to those of Scction A3, one shows that Max, .- [({* = V(O] is finite, i.e. that
Viliesin &,

The expunsions of the H,s, K,s and M5 up to a given order in m, just like those
of the F,,5 and G,s, cun be derived from eqns (99) through truncation of the series
and analytical evaluation of the integrals. However the calculations implied are even
more cnormous than for the F,s and G,s, so that the authors have not attempted to
obtain high order expansions analogous to eqns (66) and (67) for the latter functions
and limited their calculations to the first order; the main objective here is not to derive
accurate values of the functions (which will be achieved through numerical computation
of the series (99), see below) but to compare the results with those of other authors. Thus
one gets

9 9
Hi(m)y= - -8~nm+0(m’); H,(m)= —Z+0(m2);

o =3 400m; Hoslm = 842 ) o0r):

K,(m) = %1/2—nm+0(m’); Ky(m) = — §ﬁ+0(m2);

3 3 5
Mi(m) = = ZTm+0(m’); Myp(m) = =5 +0(m*);

My () = 5 +0(m?); My.(m) = (74_r - —i—?)m+0(m’).

Similar formulae werc derived by Karihaloo er al. (1981), Sumi et al. (1983) and Sumi
(1986. 1991). using the Banichuk-Cotterell-Rice perturbative procedure ; their results are
the same as those above (after correction of some algebraic errors in the first work), except
for the values of H,, and M, which were calculated only by Sumi (1991) and found by
this author to be



490 M. AMesToy and J. B, Listonp

21 s
Hys(m) = (2-—- ~8£)m+0(m"); Mau(m) = — ?m+0(m“).

These discrepancies. just like that observed for the function F-,. illustrate the fundamental
inapplicability of the Banichuk—Cotterell-Rice procedure to non-4" cracks (see the
Introduction).

Some results were also obtained by Sumi (1991) concerning the other functions involved
in eqn (5). These functions are considered of secondary interest by the present authors,
for reasons explained in the Introduction. Calculations analogous to those of Sumi arc
nevertheless presented in Appendix D in order to complete the comparison with this author’s
work.

Equations (99) also allow for a numerical evaluation of the functions #,,. K, and
M,,. For the H,,(,‘ tor mshmu. the procedure is as to!lo\w deduce /U5 from U} =
(ky =1k )2/ 7). . o from .o/ Uy, o/ U from .o/ U3 .. through Gaussian integration
over the arc C*, using thg values of U§, .o/ Ug, /7L, .. at the conjugates of the Gauss
points of the arc C'°, and varying { among the same points (in this way all functions
are calculated at the same points): calculate U, on € through suitable truncation of the
series (44, ). then at the point ot and at some Gauss points of [ by re-using eqn (34);
eva!uatc Uy (egn (821 on O caleulate X, {egn (83)) on € use these results to com-
pute ¥V on € (eqn (88)); cvaluate thc (suitably truncated) series (99) on € in the
same way as the series (d4) ¢ caleulate ¥ TRy (egn (90)) and F00) {eqn (87)): compute
the term \/n LS due to curvature inoegn (89), and consequently derive the
values of the fi,.;s (fork, =1 k,=0)or 11 S tfor by =00k, = 1) finally get the s
from eyn {70,).

The accuracy of the method can be very simply assessed by applymg it to the com-
putation ol the term proportional to e, in W, (=0 in theory, sce Section B.d) and
examining the smallness of the result.

However, this method raises a non-trivial numerical problem ; indeed the accuracy
obtained by using ordinary Gaussian integration, estimated as indicated above, turns out
to be poor {~10 ). This is because many successive integrations are required, so that
small numerical errors made at cach step add up and result in a large final inaccuracy. The
main errors arise from the evaluation of integrals of the form

J" /(/)df

o r (’5"“‘-,}‘

for { close to +1: the function in the denominator then varies very quickly when 4 — + 1
so that the integration is inaccurate near these points. Simple strategies aimed at improving
the evaluation of such integrals, such as increasing the number of Guuss points in cach
clement or the number of elements near + 1, prove to be relatively inefficient  this is because
the set of { points used is the conjugate of the set of 2 points, so that the accuracy gained
by using more 4 points near £ | is degraded by requiring the calculation of more integrals.
The solution which was adopted consisted of accounting for the quick variation of the
function in the denominator by replacing f(4) by its average value in cach interval of
integration J4,., 4,, [ (evaluated by standard Gaussian integration), extracting it from the 8
symbol and calculating the remaining integral

Jl.»t da
Cpen iy
;o (A=0)

exactly.
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Tables 1, 2 and 3 display the results obtained with 100 Gauss points distributed among
50 elements ; the lengths of the latter decrease toward the singular points + 1 according to
a geometric progression the parameter of which is adjusted for every kink angle in order
to optimize the accuracy (estimated as explained above). These tables are easily sup-
plemented for negative kink angles since simple symmetry considerations show that .,
Hi., Ky, M\, My, are even, and H,,, H;;, K,, M,, My, odd, functions of m. The
(absolute) accuracy is of the order of 10~ 3,

Table 1. The H,, functions

Kink angle (*) H,, H,, Hy, H,,

0 0 -2.250 0.750 0

5 -0.098 —~2.236 0.746 -0.189
10 -0.194 -2.196 0.731 ~-0.374
15 —0.288 -~2.129 0.707 -0.553
20 -0.377 -2.037 0.675 -0.723
25 —0.461 -~1.922 0.635 -0.879
30 —-0.538 - 1.786 0.587 - 1.021
35 —-0.608 ~1.631 0.533 -1.145
40 ~0.669 - 1.460 0.474 ~1.250
45 -0.721 -1.276 0.410 -1.334
50 -0.763 - 1.082 0.344 - 1.396
55 -0.796 ~(.881 0.276 - }1.436
60 —-0.819 -0.677 0.207 —1.454
65 -0.833 ~0.472 0.139 —1.450
70 —-0.837 ~0.270 0.072 - 1.424
75 -0.832 -~0.073 0.009 - 1.378
80 ~-0.818 0.115 -~0.052 -1.313

Table 2. The K, functions

Kink angle () K, K, Kink angle (M) K, K,

] 0 - 1.879 45 2.291 0.043

5 0.381 - 1.850 50 2.290 0.377
10 0.751 - {.763 55 2228 0.701
15 1101 -1.622 60 2108 1.006
20 1.419 - 1428 65 1.935 1.284
25 1.698 -1.192 70 1.712 1.527
30 1.930 -0.917 75 1.448 1.728
35 2.109 -0.613 80 1.150 1.8383
40 2.230 ~0.290

Table 3. The M, functions

Kink angle () M., M, My, M,
0 0 ~1.500 0.500 0
5 ~0.065 —~1.491 0497  —0.019
10 ~0.130 —1.464 0488  -0236
15 ~0.192 ~1.420 0474  -0.349
20 ~0.252 ~1.358 0454  ~0.457
25 -0.307 ~1.282 0429  —0.556
30 ~0.359 ~-1.192 0.399  —0.645
35 ~0.405 ~1.089 0.366 —0.724
40 ~0.446 ~0.975 0328  —0.791
45 ~0.481 ~0.853 0.289  —0.845
50 —-0.510 ~0.724 0.247  —0.3885
55 -0.532 -0.590 0.205  -0911
60 ~0.548 ~0.454 0.162  -0924
65 ~0.557 ~0.318 0.119  -0922
70 ~0.560 ~0.184 0077  -0.907
75 -0.557 ~0.053 0037 -0879

80 —0.548 0.073 ~0.001 ~0.840
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CONCLUSION

The detailed expansion of the stress intensity factors being now available, it only
remains to indicate how it can be combined with a propagation criterion for crack path
predictions. The criterion that will be considered consists of two parts:

(i) the principle of local symmetry, which gives the kink angle through the equation
k* = 0 (ek, = 0inthe regular, kink-free part of the crack, where the SIFs are continuous) ;

(i1) the Griffith postulate, which stipulates the intensity of the loading necessary to
effectively promote propagation rig the equation 4 = ¥ ekt = k. (e>k, = k,. in the
regular part of the crack).?

[t now becomes necessary to introduce the possibility of a variable loading, otherwise
the Griffith postulate cannot be perpetually satisfied as the crack extends. Here we shali
make the simplifying assumption that the loading is preportional, i.e. that it varies only
through multiplication by a time-dependent scalar u(¢) ; extending the reasoning to non-
proportional loadings is straightforward. Equations (2). (3), (6) and (7) are valid for a
constant loading. but this restriction can easily be removed by noting that since the solution
of an elasticity problem depends only on the current geometry and loading. the &,(s)s can
be evaluated by prescribing a constant loading corresponding to the final value of p(1) ; this
just means multiplying the expression of the &,{s)s given by eqns (2), (3). (6) and (7) by
this final value. Writing u(¢) as

W) = l+;L‘""’\/.s‘+u‘”.s‘+0(.\"'3),i {100)
we get

k,’(_\') = ["in{ (’”)kvl + : [k;}%,‘ :)}::"- 1 + “*[[lul("‘)kd + !“ g :)[‘;‘"{(”:)k«l} \//‘
+ :[k;IH ,(m‘“f { + ("A’[,u,("')kq + l‘( ' :)([ki’l’:))::’: 0 + a*l,pq('n)kq)
+ 1 F, (m)k,}s+0(s" %),

where the notations &, [k ], o and k{1204, refer to the original loading (prior to
multiplication by u(1)).

Using the above criterion, one must cquate the successive coefficients of the expansions
of k,(s) and k.(s) to k,, (for the first coeflicient of the former expansion) or zero (for the
other coefficients). Thus one gets at the various orders:

Order 0:
Fz!(n!} k:
= 2 F k, =k, 101
Fa:{m) ky’ lq(m} ¢ ‘ ( )
Order 1/2:
o {}i{i}i*‘“ an_ (£ :)};'.n_n.{..a*f{m(m)k,,_ (102)
H . (m)k, k.

1 The first equivalence arises from the fact that % is proportional to k¥ + &% with &% = 0. o

* Since in practice x will be a differentiable function of time, such a /s-dependence may seem at first sight
to be experimentally unachievable. This is not so however, because it only requires that s vary proportionaily to
¢ just after the kink. which is not unrcasonable.
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Order | :
KE, K& L o+ C* M (m)k,

L I (h 1 21y2 _ 103
C Mok, =) k. (103)

These equations provide the geometric parameters of the crack extension, the intensity of
the initial loading and the coefficients of the expansion (100) of u(2). (Inverting this equation,
one gets s as a function of time, which is physically more meaningful.) The expressions for
m. a* and C* are seen not to involve x"'® and u'V, which means that the variation of the
loading hus no influence on the shape of the path followed by the crack. This property would
not subsist for a non-proportional loading; it arises from the fact that when one applies
the principle of local symmetry at the order \/; for instance, the term u'"7'F, (m)k,
automatically vanishes as a result of its previous application at the order s° = 1.

As a particular case, one may consider the regular (¢*) part of the crack. Then
[k 31 = G(0)T = 0 (see eqn (67,)) so that eqn (102,) yields a* = 0. Furthermore
K], can be identified with the derivative [dk 2/ds]qein: 0f k2(5) with respect to s along
a straight extension_in the direction of the tangent (for a constant loading) ; indeed the term
proportional to /s in the expansion of k,(s) along such an extension is zero. Since in
addition M., (0) = 1/2 (sce Table 3). k, = k. and k, = 0, eqn (103)) takes the following
simple form: '

" -7
== - ;[‘1]1:] - (104)
straght

no distinction between the initial and subsequent curvatures C and C* being necessary here
since the curvature is continuous. This remarkable formula may be regarded as the general
equation of the propagating crack in that it provides the value of the curvature at any
regular point. It could in fact be inferred from other works such as those of Karihaloo et
al. (1981) and Sumi ¢f ¢/. (1983), but it was not presented there in the form (104) and, more
importantly, it was only obtained under certain restrictive hypotheses, among which the
straightness of the initial crack. (As a consequence, the expression found for 8, analogous
to (5), did not include the term CJ,, (m)k, proportional to the initial cruck curvature and
was theretfore invalid for a curved initial crack.)

Fquations (101)), (102), (103)) and (104) allow the envisaging of crack path pre-
dictions over arbitrary long distances by step-by-step methods, each step involving numeri-
cal computations of stress intensity factors, calculations of geometric parameters of the
future extension, and remeshing operations. One possible strategy consists in: computing
the initial values of k, and &, ; evaluating m from eqn (101,); adding a short straight
extension to the crack in the direction mm through remeshing ; getting [k4/2]2"_ ; from the
value of k, at the tip of this extension; using eqn (102,) to obtain the value of a*;
suppressing the preceding extension, replacing it by another one having an a* equal to the
value determined but a zero C*, and obtaining C* in a manner analogous to a*; suppressing
this second extension and replacing it by a third, final one having the values of a* and C*
determined ; stopping the extension at an arbitrary but small distance from the original
crack tip, and reiterating the procedure. The intensity of the loading at each step, if desired,
can also be obtained ria the value of u(f) which is equal to the ratio k, [k, k, being
calculated for the original, reference loading.

Several variants are possible. One may think for instance of skipping the calculation
of C*. However, neglecting this parameter is only possible at the first step which involves
a large, initial Kink. Indced the subsequent kink angles, which arise from the fact that eqns
(101,), (102,) and (103,) ensure the vanishing of k.(s) up to order s only, are very small,
so that the values of ¢* {which vanishes together with /m, as was seen above) are also small
and C* becomes the major parameter governing the crack shape. This feature suggests
disregarding m and «*, instcad of C*, after the initial kink. In that case the path determined
numerically would involve only one large, initial kink ; the curvature at all subsequent steps
could be determined from eqn (104), [dk,/ds)igne being evaluated by comparing the
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original value of &, with that at the tip of a small. straight extension in the direction of the
tangent. One drawback of the method would be that in the absence of a kink. 4. would not
be obliged to vanish at each step and could thus become relatively large beyond a certain
distance.

The method proposed corresponds, in essence, to that employed by Sumi for numerical
studies of crack paths in situations of practical interest [see for instance Sumi ( 1991)].
However there are two notable differences. First. unlike eqns (2). (3). (6) and (7). the
expansion of the k,(s)s used by Sumi was valid only under restrictive hypotheses. as
explained above. Sccond the quantities [KY" V37 o, (K414, [k dS]uuen Were not
exprc»ed in that form but in terms of the coefficients T. ;. b, of the terms proportional
tor’ = tand fr in the stress expansion near the original crack tip. As a result, in contrast
to the method proposed here, that of Sumi did not only require the calculation of stress
intensity factors but also that of these coetficients.

Acknowledgement—The authors express their deep gratitude to Professor Sumi for several very helpful discussions,
and especially for pointing out the incorrectness of their previous attempt to determine the functions H,. K, and
M., (Amestoy and Leblond, 1986).
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APPENDIX A: PROOF OF THE LEMMA OF SECTION A/l

With the notations and hypotheses of the lemma, the function g.(z) = g(1/3) is continuous on * u # and
analytic on Q". Furthermore = = 1/Z on 4. Thus eqn (21) can be written as

[y =g42) for zed.
Using then Muskhelishvili's (1953) formulae (70.1°) (for f) and (70.2) (for g, ). we get, if e Q™ :

1 [ fwde

2in e 1—=

1

L[ gelnd
= —f(2)+f(2) = s go(0) o

din v 1=z

where the arc # is oriented anticlockwise ; it follows that f is a constant. Furthermore Muskhelishvili's formulae
(70.2) (for f) and (70.0) (for g, ) yield, for ;e Q% :

_L S de

dn fe -2

U galn) de .
=S =501 o =9

so that g is also constant and conjugate to f.

APPENDIX B: PROOF OF EQUATION (4])

Proving egqn (41) requires that it is shown that the function w({) defined by the right-hand side verifics the
integral cquation (34,) with the “second member™ V() = —(a7/2H{ +m). 1.c. that

afw({} = E‘;‘l [Civ-mi»(n:-f) <§-—-§:«)m] (for{ell™), (Bl

the determination of the function (({ + 1)/({ — 1)) being such that the cut be located on any ar¢ connecting the
points +1in [1* and that its limit for { = oo be equal to unity,

Using eyn (35,), deforming the integration path back to the real interval | — 1, + 1[, and noting that w{5) is
given by the same formulda (41) as w({), but with the cut of the function ((4 + 1)/(A—1))™ along some ar¢ connecting
the points +1 in [T instead of [T* so that ({(A+ /(A1) = e ™ (1 + /(1 =)™ for L] -1, + 1], one gets

oo _gnsinmr [T =1 (1A
Swll) = —72 J-_, a=piu=i) %

The change of variuble u = (1 + 4)/(1 — ) leads, after a bit of algebra, to the following expression :

Ww() = -

2 sinmy [ ™" du
(B2)
0

-2 17

The value of a closely related integral can be found in Gradshieyn and Ryzhik (1965) (formula (3.223.1)):

o u“"du r au-x_'byq
e (u+al{u+b) sinpgn  b-a

The determination of the power functions in this formula is the usual one with the cut along the line of negative
reals. Differentiating this expression with respect to a and b, we get

J"" u*~ ' du _ = ( I)a“"':"*r—b"'1 za“"—lf‘"
b (u+a) (u+b)? sinpun H (a—b)? + @a=b)?* |

Inspning thisresult with y = m+2, a = Land b = ({+ 1)/({~1) into eqn (B2), one obtains, after a few manipu-
lations, eqn (Ql) for o/w({), with the desired determination of the function ({({+ D/({—1)™.
The function w({) = [F({}],. , defined by egn (41) possesses a nice mechanical interpretation which explains
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its Juck of influence upon the SIFs. Indeed it is well known from the work of Muskhelishvili that adding a term
of the form 142 (4 being real) to the potential ®(Z) does not change the stresses, because it represents a rigid
rotation. Let us transform @ in that way ; then we add 14c(z) to @(z). and therefore i4w'(2) to ¢'(z). Expressing
this quantity in terms of [ using eqn (33,). and expanding the result in powers of x. one finds that

-, e

tAw () = Zdxim -} (’-— ! ) + 027,

s-b

Equation {334 tlfxen shows that a term A(m— (0~ 1 (J—1))™ is added to ¥(;), and this is precisely the form
of [+ ()] - o. This function therefore only represents a rigid rotation, which is why it has no effect on the SiFs.

APPENDIX C: PROOF OF EQUATIONS (45)—(65)

The proof of eqns (45)-(54) will be presented in detail. but only brief comments will be given in fine on that
of egns {55)-(65). which follows essentially similar hines. Our starting point is eqns {35,). (36}, (39) and (34}
The last equation was proved only for Je C . but it is easily verified to be also applicable to the calculation of
U, and in fact to that of ()Y atany point ;e C~C ™.

Step 1 In order to concentrate on the mujor difficulties, we first “extract™ some uninteresting factors from
the cquations just mentioned by introducing the following set of functions, definedon C-C*

) . (45—, 1) da .
= v = [ — “".“‘J":"T'““ (n>h. ch
o tA—mA=0)"
Tt 15 then casy to show by induction that
/k, —tk . fanmrY N
- . AVLAS if s even
I n -
KA B Ty ,
ko vk fsimn
- N ¢y () i mis odd.
h -
2

Combining this result with eqns (39) and (44,), one gets eqns (43) and (46), with x, = x,(m). The problem is thus
reduced to caleubating the v {0)s.

Step 2. One discovers, upon study of the first x,(0)s, that caleulation of these functions essentially requires
the evaluation of the integrals

. ‘s
O = f (:ug* 'f}-~5> 4 =002, (C2)
A A+l) A—(
where log* is the logarithm function defined on C =R by log”® {pey = In p+i0 with — /2 < ¢ < 31/2. Having
cusily caleulated @,(0) and encountering the integral O,(J), Wu (1979) wrote that "unfortunately the appearance
of the logarithmic term . | makes the explicit evaluation of the higher order terms impossible™. This statement
was ubviously motivated by the fact thut functions of the form (log x)/(x—a) must be integrated to get ©,(5)
and that indefinite integrals of this kind are not expressible in terms of elementary functions. It will be seen,
however, 10 be over-pessimistic : indeed @,({), and more generally the @,({)s, are definite, calculuble integrals.
We shall begin by evaluating the real integrals

A S T AU c
f‘,=j_] (mi“) di. (€3

Fo=20 Fuo=0 (k=012..) (C4)

First, it is obvious that

J s tk 2 1) remains to be caleulated. Writing it in the form Zfé ..., putting £ = {1 =A}/(1 +4), and integrating
by purts using 1 = U{1+ 1) as an indefinite integral of {1 +8)°, we get

(* (n 0 dr 1 N Ynn®-tde
W= SR ~ A V| —s] SR
7 4_0 (t+n° At dnn - o 141

The term (... [T is zero and the value of the last integral is (= 1)*~ (1 =2%*-YY2k)yn* By, where B, is the gth

t i

Bernoulli number (Gradshteyn and Ryzhik, 1965, formula 4.271.2). Therefore
Sy =DM =2* ¥ By k2 ) (C5)

Since By = 1. 1 =2 =0forg=1and B, =0 for g odd >3 {sec Gradshteyn and Ryzhik (1965)]. equs (C4)
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and (CS) can be condensed into the following single formula :
S, =41 =2""N~in)B, {g=0.L2..). (C6)

Step 3. We shall now calculate the integrals

A-1Y
f,, = J;‘ (log‘ m) dai. (C7)

where log* is the function introduced above. First we deform the integration path onto the real interval j—1.
+ 1[. This does not raise any problem since log* is defined on C~iR~ and (Ai—1) (A+DeiR™ onlyif ieC",
which does not occur during the deformation. We then note thatif ]~ 1, +1[. (A— D/(A+ D e]—x, 0 so that
log* ((A— D/(i+1)) = In ((1 =A)/(L +4))+ir. Using Newton's formula and eqn (C6), we thereby obtain

go= ¥ Cilinyrs, =8 ¥ -1y (=278,

rm0 r=0

=4(-—i1t)“[ ¥ C=1yB -2 ¥ C;(-é)-’B,].

t=@

Now the first T is nothing other than B,(— 1), where B,(X) denotes the gth Bernoulli polynomial {see Gradshteyn
and Ryzhik (1965)]. Similarly. the second I is equal to 8,(— 1/2). Furthermore Gradshteyn and Ryzhik’s formula
(9.624) yields B,(—1)—2""'B(—1/2) = 2*~' B, (since B,(0) = B,). It follows that

J, = 2-2in)8,. (C8)

Step 4. A difTerential equation for the functions @,({) will now be exhibited by calculating the integral

. LY IO S A
X —'[" a—_—c‘“)'s (los ;.‘;‘i) di

in two different ways. First, using the identity A* =1 = (A =03+ 2{(i-{ +#{ =1, we got
K = 7, +280,0)+ (= DO

Sccondly, assuming g > 1, integrating by parts and writing 24 = 2(4-{) + 2{, we obtain

2t a=1yFe WA=ty
X—-[—- *Z:E(!OB m)]-,l‘*-‘l;"i_——c(lo m) di

A=V dd
¥ - Y *Ey (7 - -
+j (los h +1) Tor = 2 RO+ 240,15

Compurison between these results yields

F,+249, (0

00 = =5

(a4z1) <

Step 5. Equation (C9) will now be used to prove inductively that

(=2inp*! P g-d . \
@'(C)———W'l [B"'(‘ii;log C—;T)_B“'] ((eC=C"), (C1oy

where 8,(X) denotes the gth Bernoulli polynomial as above and log™ the logarithm function defined on C~iR”
by log " (pe?) = ln p+i0 with =3n/2 < 0 < =/2.

For ¢ = 0, eqn (C2) immediately yiclds ©,(0) = log (({ =1)/({ + 1)), and the determination of the logarithm
is readily verified to be that of the function log~ defined above. This result agrees with eqn (C10), since
By(X) = X=1/2and B, = - 1/2 [sce Gradshteyn and Ryzhik (1965)]. Let eqn (C10) now be assumed to hold for
q—1{g > 1). To prove it for ¢, let us call Z,({) the function defined by the right-hand side and cvaluate Z;(;)
z(a(s::;;‘% t(!}_c prop:;ty 8, (X} = (g+1)B,(X) (Gradshteyn and Ryzhik, 1965, formula 9.623.3) and egns (C8) and

org—1):

o A=2in) 1, -l
=20 ="ry B'("Zin"’s ﬁ-")
4 +249,..(D

2 )
=E{:T{q®q-l{0+(‘2’ﬂ) 8= 1
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Comparison with eqn (C9) shows that Z/(J) = ©,({) and thus that = A8 = ©,(J)+ Cst. The constant is easily
identified by letting [ tend to infinity: then ©,() _.0 by eqn (C2), and log™ (( -+ —log™ (1) =0s0
that = (J) - 0. therefore the constant is zero. it follows that Z,(;) = ©,(). which establishes eqn (C10) for ¢

A Sufp 6. The cxpr_es_snon for the ©,(J)s now being known, it only remains to connect the X,(3)s with them.
With trial and ervor. it is found that the integrals defining the x.{J)s can be most naturally expressed in terms of
certain combinations of the ©,(J)s of the form

~ / . N
U a1 da

J(-~ ki (Z—i;mg At l),{—;

and their denivatives, where the £, (X)s are polynomials defined by eqns (48) of the text.t
We shall first establish inductively the following elementary properties of this set of polynomials
PP =1 PP =(~1)qP7 (X)) (¢g=1). (C1h
The proof of eqn (C11,) is trivial. Equation (C11,) for n = 0 results immediately from eqn (48,). If it is true for
n—1.eqn (48,) yields
PO = (— l)“ V C,, (=D PR,

Since rC;, = ¢C7 |, this can be written, putting s = r—1:

v b
PR = (=g(= 1" Y CooiBoy P = (= 1)gPY (X0,

= )
which establishes eqn (C1,) for n.
Step 7. We shall now prove inductively that

i l A=1) di (=D2in (-1
n L = e LENT — y o fn 13} - _ + N
J(" ry <:mlog 1T l) v, I’P‘V., ( 5 log - e l) Py (())] (eC-C"*). (CI)

For s = 0, this equation reduces to eqn (C10), because PL(X) = (—1)78,(.X) by the definition of the Bernoulli
polynomials. Let us assume it to be correct for n—1 (n 2 1). For the index n, the integral considered is equal, by

cgn (48,), to
A (=1 'Zm . 1 (-1 .
(=07 LGBy [x'"'(":in"’g foy) O

r=

Since Cl/(r+ 1) = 7,5 \/(g+ 1), this quantity can be expressed, putting s = r+ 1, as

RN

(_”"7”[ . AN | {1
R 3 M fog e )= P
e -1 Z( B P 577108 i el (V)

(the term (s = 0) in the above sum being zero by eqn (C11))), which is identical to the right-hand of eqn (C12)
by eqn (48,).
Differentiating eqn (C12) with respect to { using eqn (C11,), we also obtain

] /~I di 2 1 -1
mf D = LAY R PR - ek 13
J:P'q <~ lq, )("‘s) C:_II,, ( Zinlob C+|) KeC~C"). (C13)

Step 8. The trickiest results are now established; the two remaining steps are somewhat tedious but
straightforward. First we calculate an integral analogous to that in eqn (CI12) but with (47 - D/A—a)(A=0)Y)
instead of 1/(4 —{). This is easily done be decomposing this rational function into partial fractions and using eqns
(C12) and (C13):

m*—1 l—m- C
g

5 e + X
=1 (g—-m) (5—m) " AT—1 wl 1 , ".,—,N! R
GemG-0f "~ i=m T Taist Te-of T L(;.—m)u—cf"" 28 v )

(—1)"2in | —m? t {~1
- - Fnbt n - __l y e
g+1 {[l+(;—m)‘] A < 2in V8 5+l>

nt- —-l N I R m—} '””
TSR ('i;"’g ;,':,‘) PO
2 1 1 (-1 . i |
TR ' : cl4
+‘ _mF ( zmlog :+l> (CeC* . #m) ( )

t These polynomials offer strong similarities with the so-called generalized Bernoulli polynomials 8 (X) [see
for instance Fletcher et al. (1962), p. 69], which verify the same induction formula (48,) except for the (-~ 1)’
factor. In fact these sets of polynomials can be shown to be tied by the relations P (X) = B (X +n,2) for neven,
Bi'[(n+1)/2 - X] for n odd.
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Differentiating this equation p times with respect to m and dividing by p!, we also get

FE 1
— e PO | olog® — | dA
J;-»(}.-m)”‘(;i.»;)'lx" (Zm i+l )
(=2 [ (p+D(1=mY) 2mp =2 Jpwen(_ L, ,i_;—__{)
T g+t {[ e et e R rame § L N LSy
’ ral e [, {1, m=1
+,§0(p~r)!{§-m)":dm"’[(m DE 2ixlog m+1

2 1 -1 rhct g
PPt —s=logm ] (P2 L{¢CT.J#m. (€15

+ .
C—myst din {+1

Step 9. We shall now use eqns (Cl4) and (C15) to prove inductively that the functions x,({) admit the
following expression:

i

' 1
(0 = Z Z ] "'( 2,,(‘03 <,+;) CeC*t.{#m), (C16)

¢
;.-Oq-.o —m)?

where the a7's are coefficients which depend on m. This equation is obviously true for n = 0 with &7 = [, which
is identical to eqn (49). Let it be assumed to hold for n—1 (n = 1). One then gets, using eqn (C1,):

e _‘"é'"é e e th A=
X0} P'Mﬂpaw J- ac m)*’”(.l g)’F ( 5 —log~ I+l) A

Now the coetlicients of the polynomial "~ (X) being real,

t I
L L R P e P ) -
F" ( 2in to f:l) r (2ink’g it i)'

and 1t is easy to cheek that I(ii: L “DEvD) = log* ((A=1)/(A+1)) for Ae C*. Therefore the above integrals
are precisely of the form of those on the left-hand sides of egns (C14) and (C15). Using these equations, one finds
thit x,({) admits an cxpression of the type (C16}, the coeflicients o being given in terms of the g, Vs by eyns
{50y (54).

- Sinee eyn (C16) does not apply for { = m, it remains to derive the expression for x,(m) = x,. This is casily
done by expanding egn (C16} in powers of { —m, which is allowable for sufliciently small values of this quantity

oophdly el ) i _m—1 . ,
)= 2‘ Zo(‘.mm)”,_ ! dm’ [Pf' (~—§i~;log m+i)] G=m)".

poly=~

kf one takes the limit § = m, the divergent terms (r < p) must be zero since x,(¢) is regular at { = m (this is obvious
from eqn (C1,)), the terms (r > p) vanish, and one therefore gets eyn (47). This concludes the proof.

With regard to the functions G, (eyns (55)-(65)), one is led to introducing another set of functions y,({)
which verify the sume induction formuhx {C1,) as the x,{{)s, but with y,{({) = €+m insteud of 1. These functions
can be expressed under 4 form similar to eqns (C16) and (47), but with p now ranging from — 1 {instead of 0) to
nin the expression of ¥,(0), { # m:

n L] 'b"ﬂ l ‘;_‘
2 = z Z P - ~log ] CeCr. L#m)

. o (G —m)? ¢
(where (~ 1)! = 1 by definition) ;

i m—1

=y o & im) n} -
YuErdm) = ¥ Z b"'d r’{F ( -mlog m+l).}'

peig=0

where the #7)s verify eqas (58) -(65). The integrals needed in the proof include those above plus a new one,

A=
”)
L.P‘,( log}‘ )dA.

which is casily evaluated by letting { tend to infinity in eqn (C12) and identifying terms of order { 7.

APPENDIX D: COMPARISON WITH SUMI'S RESULTS FOR THE NON-UNIVERSAL TERM
Z, AND THE FUNCTIONS /,,(m) AND L, (m)

In addition to the resuits mentioned in Sections A.3 and B.S, Sumi (1991) obtained the following formulae
for the non-universal quantities Z, involved in eqn (5):
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£y

b7 1
Z.= [}:ff E»”Lf, -+ ( lb;m’)fn —nmf;gjlks

£

nm 9t m’ ’
+[—-~w-f ~ K *:rrzf:,+(l—~~ 8 )f:z‘{f\‘_n (D
In these equations the £,,s are coefficients which depend on the whole geometry of the body and the initial cruck
and on which portions of the boundary have tractions versus dxsphluma.ms preseribed (they are non-universal
quantities). but are independent of the geometric parameters m. a* and C* of the crack extension and ulso of the
loading. Sumi also derived the fo!lowmg low order expressions of the unnersal functions £ (m) and L,,(m) :

I Sxim? S=

£ {m) =§+ 3 +0(my 1) = — -}5 +0(m’y:
nm 1 dinied
Ih(m) = — T +0(m’):  Iy(m) = 3T e +0(m*) (D2)
27
Limy=— H +0(m?y; L,m) =0(m);
61 2
Ly(m)y =0(m)y;  Lpim)y = — 3 + - +0( n'y. (D3

With rcg;trd to the 7,5, the following formula (in matrix notation) was derived by Leblond (1989) from the
Bucckner Rice weight function theory

[7] = FemiE [ Fem} [Fom]ik). [§RAY]

where [Y]7 denotes the transpose of LX), Inserting the second order expressions of the £.,8 derived by Wu (1979
and contirmed bere {see cyns (66)] into this formula, one obtains

) T Tntm? 3nm Intm?
A {! P~ q }f,, — ik |, - 5 Lo+ 5 {::}k,

/ 97y | 3wt 3
+ {Mmmf,.«& [%* ( . )m” 1£,3+ & Koo— mmf::}k;;

K B
N an m?
7. t{ ;fu“‘ ;_;” fsz*’[ ( ) } ,{—nmf,,}kt

n'm Y |
+{ -~—~-[ +’v!mf“-::mk‘:,+{!v’-(—(l+ n)m:!k’_‘:}k:. (%)

2 2 8

The term proportional to £,,4, in Z,, and those proportional 1o £,,&, and £,k in Z,, are ditferent from those
tn eqns (D). These diserepancies are not very surprising since eqn (D4 invalves the function £, and Sumi's
result for this function differs from that given by Wu (1979) and confirmed here (see Section A3). It must be
noted however that the differences cannot be completely explained in that way ; indeed, inserting Sumi’s value for
F; into eyqn (D4), one still does not obtain eqns (DI1). (In other words, Sumi’s results are incompatible with the
Bueckner Rice weight function theory, which is the basis of egn (D4)).

It conspicuously appears in eqn (5) that the functions [, (m) relate to the vatue of the &,""s for a straigh
extension of a straight initial crack (C = a* = C* = 0). One way to determine their second order expressions s
to pursuc the expansion in powers of s presented in Section A2 up 1o order 5, and to expand the resulting formulae
up to the sccond order with respect to m. In that way one derives the values of the quantities Z, + 7, (m)h,. 1t
remains to subtract the Z,s. This can be done by using eqns (D3), provided the values of the non-universal
coeflicients £, arc known for the case under study of a straight crack in an infinite body loaded by uniform forces
at infinity. To derive these values, one can use the fact that the £,,s arc connected with the derivative of the stress
ficld with respect to the length of the crack, when the latter is cxtcndcd in the direction of its tangent [sce Leblond
(19%9)]; it is easy to obtain this derivative in the case considered since in the absence of a kink, the solution 15
quite classical. The values of the /,,(m)s derived in this manner are identical to those given by egns (D2). except
for the value of I,,(m) which reads

4 (—22~+— %%)nx:-}-()(m‘},

[T

faa(m) =

Finally. the zeroth order expressions of the L, (m)s can be obtained by putting z = 0 and extending the
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perturbative analysis of Section B.2 up to the second order with respect to a®. The results are the same as those
of Sumi (eqns (D3)) except for the expression of L,.(m). which is found to be

55 R
Ly:(m) = — » +0(m?).

Once again, the reason for all these discrepancies lies in Sumi's use of the Banichuk-Cotterell-Rice perturbative
procedure for dealing with a non-€™ crack.
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